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A horizontal channel flow of two immiscible fluid layers with different densities,
viscosities and thicknesses, subject to vertical gravitational forces and with an
insoluble surfactant monolayer present at the interface, is investigated. The base
Couette flow is driven by the uniform horizontal motion of the channel walls. Linear
and nonlinear stages of the (inertialess) surfactant and gravity dependent long-wave
instability are studied using the lubrication approximation, which leads to a system
of coupled nonlinear evolution equations for the interface and surfactant disturbances.
The (inertialess) instability is a combined result of the surfactant action characterized
by the Marangoni number Ma and the gravitational effect corresponding to the Bond
number Bo that ranges from —oo to oco. The other parameters are the top-to-bottom
thickness ratio n, which is restricted to n > 1 by a reference frame choice, the
top-to-bottom viscosity ratio m and the base shear rate s. The linear stability is
determined by an eigenvalue problem for the normal modes, where the complex
eigenvalues (determining growth rates and phase velocities) and eigenfunctions (the
amplitudes of disturbances of the interface, surfactant, velocities and pressures) are
found analytically by using the smallness of the wavenumber. For each wavenumber,
there are two active normal modes, called the surfactant and the robust modes. The
robust mode is unstable when Bo/Ma falls below a certain value dependent on m and
n. The surfactant branch has instability for m < 1, and any Bo, although the range of
unstable wavenumbers decreases as the stabilizing effect of gravity represented by Bo
increases. Thus, for certain parametric ranges, even arbitrarily strong gravity cannot
completely stabilize the flow. The correlations of vorticity-thickness phase differences
with instability, present when gravitational effects are neglected, are found to break
down when gravity is important. The physical mechanisms of instability for the
two modes are explained with vorticity playing no role in them. This is in marked
contrast to the dynamical role of vorticity in the mechanism of the well-known Yih
instability due to effects of inertia, and is contrary to some earlier literature. Unlike
the semi-infinite case that we previously studied, a small-amplitude saturation of the
surfactant instability is possible in the absence of gravity. For certain (m, n)-ranges,
the interface deflection is governed by a decoupled Kuramoto—Sivashinsky equation,
which provides a source term for a linear convection—diffusion equation governing
the surfactant concentration. When the diffusion term is negligible, this surfactant
equation has an analytic solution which is consistent with the full numerics. Just like
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the interface, the surfactant wave is chaotic, but the ratio of the two waves turns out
to be constant.

Key words: lubrication theory, multiphase flow, nonlinear instability

1. Introduction

Flows of fluid films occur frequently in nature and industry. (For recent reviews, see
e.g. Oron, Davis & Bankoff 1997; Craster & Matar 2009.) Instabilities of multifluid
film flows are of considerable interest (Joseph & Renardy 1993). Such instabilities can
be significantly influenced by interfacial surfactants.

Surfactants are surface active compounds that reduce the surface tension between
two fluids, or between a fluid and a solid. Frenkel & Halpern (2002) (hereafter
referred to as FH) and Halpern & Frenkel (2003) (hereafter referred to as HF)
uncovered a new instability due to interfacial surfactants: certain stable surfactant-free
Stokes flows become unstable if an interfacial surfactant is introduced. For this, the
interfacial shear of velocity must be non-zero; in particular, this instability disappears
if the basic flow is stopped. In contrast to the well-known instability of two viscous
fluids (Yih 1967) which needs inertia effects for its existence, the new instability
may exist in the absence of fluid inertia. With regard to multifluid channel flows, this
instability has been further studied in such papers as Blyth & Pozrikidis (2004a,b),
Pozrikidis (2004), Frenkel & Halpern (2005), Wei (2005), Frenkel & Halpern (2006),
Halpern & Frenkel (2008), Bassom, Blyth & Papageorgiou (2010), Peng & Zhu
(2010), Kalogirou, Papageorgiou & Smyrlis (2012), Samanta (2013), Kalogirou &
Papageorgiou (2016) and Picardo, Radhakrishna & Pushpavanam (2016).

For simplicity, consideration in FH and HF was restricted to flows whose stability
properties did not depend on gravity. The same is true for the further studies
mentioned above. The stability effects of gravity in multifluid horizontal systems
without surfactants were investigated since as long ago as the fundamental work of
Lord Rayleigh (1900). Gravity is stabilizing when the lighter fluid layer is on top of
the heavier fluid layer, or destabilizing when heavier fluid is above the lighter fluid.
The latter is the well-known Rayleigh-Taylor instability (RTI) that has been studied
extensively (see, e.g. the classical book by Chandrasekhar 1961). Recent reviews
of the RTI and its numerous important applications are given in Kull (1991). The
combination of RTI with various viscous, inertial and nonlinear effects in two-fluid
channel flows was studied in such papers as Babchin et al. (1983), Hooper &
Grimshaw (1985) and Yiantsios & Higgins (1988). Some industrial situations where
surfactant and gravity effects are both relevant in oil recovery were studied e.g. in
Hirasaki & Zhang (2004).

In this paper, we study the interplay between the inertialess effects due to
surfactants and gravity in Couette flows of two incompressible Newtonian liquids
in a horizontal channel. Both linear and nonlinear stability is investigated. One
can expect a rich landscape of stability properties, especially since, even in the
absence of gravity, there are two active normal modes for each wavenumber of
infinitesimalrdisturbancesycorresponding to the two interfacial functions: the interface
displacement and the interfacial surfactant concentration (FH, HF). Their growth
rates are given by |a (complex) quadratic equation, and hence in many instances
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numerical results may enjoy analytic (asymptotic) corroboration. The linear stability
properties of two-layer Couette flows for arbitrary wavelength with both interfacial
surfactant and gravitational effects were the subject of the dissertation by Schweiger
(2013), and will be further investigated elsewhere. On the other hand, the nonlinear
lubrication approximation equations were obtained in Blyth & Pozrikidis (2004b)
for the long-wave disturbances of these flows, although only zero gravity results
were given in that paper. The linearized lubrication-approximation approach was
used also in Wei (2005) for the no-gravity case to offer a mechanism of long-wave
instability. In this paper, we re-derive, with certain modifications, the aforementioned
system of two nonlinear lubrication-approximation equations coupling the interface
location and the interfacial surfactant concentration for the Couette flows with the
insoluble surfactant and gravity, provided that the characteristic length scale of the
flow disturbances is much larger than the thicknesses of both fluid layers. The linear
system of equations coupling the surfactant and gravity follows as the limit of (long)
infinitesimal waves. It is also of interest to determine, to the two leading orders
in the long-wave parameter, which are allowed by the lubrication approximation,
the complete set of eigenfunctions of the eigenvalue problem for the normal modes
including the velocities and pressures, and, based on these, to clarify the mechanisms
of instability for the two normal modes. The inclusion of gravity may be expected to
clarify the limitations of the conclusions obtained by studying the flow in the absence
of gravity and to observe new linear and nonlinear effects.

Concerning the linear stability, in the present paper, we concentrate on the
parametric thresholds of instability. The latter turn out to be determined by the
leading order of the small wavenumber expansion, which allows neglecting the
higher-order capillary effects. However, we include these effects in investigating the
nonlinear stages of the instability. A natural question concerning the interaction of
gravity and the surfactants is whether sufficiently strong gravitational forces can
always suppress the linear instability caused by surfactants. On the other hand, one
can ask if surfactants can suppress the Rayleigh—Taylor instability. These questions
are answered below.

The nonlinear saturation of the surfactant instability was studied before for the case
of one layer being infinitely thick, and it was shown that it is impossible to have the
saturated amplitudes small for both surfactant and interface displacement (Frenkel &
Halpern 2006). For the finite thickness ratio, the limited nonlinear simulations in Blyth
& Pozrikidis (2004b) featured the same property, but the question remained if it holds
in all cases. We investigate this below in a more systematic way (which shows that
both surfactant disturbance and interface displacement can be small in some saturated
regimes).

The paper is organized as follows. In § 2, the general stability problem is formulated.
In §3, the nonlinear and linear systems of governing equations are obtained. The
long-wave growth rates and instability thresholds are considered in §4. Also in that
section, we study the surfactant-thickness and vorticity-thickness phase differences in
connection with their purported significance for (in)stability. In §5, we uncover the
physical mechanisms of instability for the different branches of normal modes. Also,
the eigenfunctions of the normal modes, in particular the velocities, are discussed.
In §6, the nonlinear evolution of disturbances is studied, including both weakly
andwstronglymnonlinearmregimesswFinally, §7 contains summary, discussion and
concluding remarks. Appendix ‘A gives the complete collection of the normal-mode
eigenfunctions.
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FIGURE 1. (Colour online) Sketch of a disturbed two-layer Couette flow of two horizontal
liquid layers with different thicknesses, viscosities and mass densities. The insoluble
surfactant monolayer is located at the interface and is indicated by the dots. The
(spanwise) uniform gravity field with a constant acceleration g is not shown.

2. General problem framework

The formulation used in this paper is similar to that of HF; however, gravitational
effects, which were absent in HF, play an active role here. Two immiscible fluid
layers with different densities, viscosities and thicknesses are bounded by two infinite
horizontal plates, a distance d =d, + d, apart, with the top plate moving at a constant
relative velocity U*, as shown in figure 1. The vertical coordinate is denoted z*, and
we choose z* =0 at the base liquid-liquid interface. (We use the symbol * to indicate
a dimensional quantity.) The top plate is located at z* = d, and the bottom plate is
located at z* = —d;. The horizontal x*-axis is streamwise. At the interface, the surface
tension, o*, depends on the concentration of the insoluble surfactant monolayer, .
The basic flow is driven by the steady motion of the top plate. If the frame of
reference is fixed at the liquid-liquid interface, the velocity of the bottom plate is
denoted —U7, and that of the top plate is Uj, then clearly Uy + U; = U*. In the
base state, the horizontal velocity profiles are linear in z*, the interface is flat, and
the surfactant concentration is uniform. Once disturbed, the surfactant concentration,
r'*(r*, x*), is no longer uniform, and there is a varying deflection of the interface,
n*(*, x*), where * is time.

The governing equations in dimensional form for this problem are given, for
example, in Frenkel & Halpern (2016). We write the full set of them in a
dimensionless form below. We use the following notations (with j=1 for the bottom
liquid layer and j=2 for the top liquid layer): p; is the density; v; = (u}, w}) is the
fluid velocity vector with horizontal component «; and vertical component wy; p; is
the pressure; u; is the viscosity; and g is the gravity acceleration.

Werassumertherdependencerof ssurface tension on the surfactant concentration given
by the well-known Langmuir| isotherm relation (Edwards, Brenner & Wasan 1991),
which becomes 'the linear Gibbs isotherm when the surfactant concentration I is
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much smaller than the maximum packing value /. Then we can write
0" =0y —RT(I' = I), 2.1

where oy is the base surface tension corresponding to the base surfactant concentration
Iy, R is the universal gas constant and T is the absolute temperature.
We introduce the following dimensionless variables:

x*, 7%, n* t* (ui, wy)
(x9 2, n)=w’ 1= ’ vlz(u/’ W])_ ’
d, dyju1 /oy 00/.“1 2.2)
pf r* o* :
pi= , I'=—, o=—.
oo/d, Iy 00

(Similar to FH and HF, using the velocity scale oy/u, rather than the plate speed,
allows one to include into consideration the case of zero plate velocity corresponding
to the absence of base flow.) The continuity equation and the Navier—Stokes
momentum equations are, respectively,

V.v,=0, (2.3)

ov; A
Cf < ot ;- ij> = —Vp; +mV*v; — Bog, (2.4)

where the vector operator V :=(9/0x, 9/0z), Re; := U;‘dl/ Wy is the Reynolds number,
Ca;:= Uf,ul/o*o is the capillary number, m; := u;/p, — where from m; =1 and m, =

W2/ =:m is the viscosity ratio, Bo;:= p;gd: /oy is the layer Bond number and Z is
the unit vector of the z-axis. The plate boundary conditions are

u(=1)=—-Ca;, wi(—=1)=0, u(n)=Ca,, w,(n)=0, (2.5a—d)

where n=d,/d; is the thickness ratio of the liquid layers. Without loss of generality,
by appropriately directing the z-axis, we obtain n > 1. Note that this allows for
negative as well as positive values of g. The interfacial conditions for the velocities,
the tangential stresses and the normal stresses are, respectively,

[v]?=0, (2.6)
1 2 o,
147 [( —m) (UZ+WA)+277X 1( ux)]l :—W, 2.7
and
{(1 020 — 25 (e — (s, + wy) +wz>]2 =M 2.8)
X i xWx X X 1 (1 +r]§)1/2 s

where [A]> = A, — A, denotes the jump in A across the interface z = n(¢, x). The
surfactant transport equation is (see HF)

19 /1@
—(HF)+—(HFu) Poox (H8x> (2.9

where H=(1+n»)"?, u=u(t, x, n(t, x)) and Pe™! =Dpu/ood, is the inverse surface
Péclet number, the dimensionleSs representation of the surface molecular diffusivity
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Dy of the insoluble surfactant. Usually, the latter is small and the surfactant diffusion
term is negligible. The kinematic boundary condition is

N =W — uny, (2.10)

and the dimensionless form of the equation of state for the surface tension, equation
(2.1), is
oc=1—Ma(I" — 1), 2.11)

where Ma :=RT1I}/o, is the Marangoni number. It is easy to see that the Marangoni
number can be written as Ma = (o, — 0y)/0y, where o, is the surface tension in the
absence of surfactant. Usually o, — 0y < 0y since we are restricted to the linear part
of the isotherm (see, for e.g. Mensire et al. (2016, figure 2)). This implies the range
of Marangoni numbers to be

0<Ma<kl. (2.12)

The dimensionless velocity field of the basic Couette flow, with a flat interface, n =
0, uniform surface tension, 6 =1, and corresponding surfactant concentration, I" =1
(where the overbar indicates a base quantity), is

u(z)y=sz, w; =0, and p;=-Bojz for —1<z<0, (2.13a—c)

s
() =—z, wy=0, and p,=-—Boy,z for 0<z<n (2.14a—c)
m

The constant s is used to characterize the flow in place of the relative velocity of the
plates, and represents the base interfacial shear rate of the bottom layer, s = Du,(0),
where D =d/dz. Clearly, s = Ca,, while Ca, =sn/m, and thus w,U*/oy=s(1 4+ n/m).
To estimate the range of s, note that for oy ~ 10 (in cgs units), fairly large viscosity
w1 ~10 and Uy ~ 1, we obtain s~ 1. This implies that in practice

0<s< 1. (2.15)

The disturbed state with small deviations (indicated by the top tilde, ~) from the
base flow is given by

n:ﬁ, uj:ﬁj+ﬁj, Wj:\’;Vj, pj:ﬁj_‘_ﬁjv F:I:—i-f (21661—6)

3. Lubrication approximation

We will use the lubrication approximation, assuming that the characteristic
horizontal length scale L of the disturbances is much larger than the thicknesses
of both layers. The equations were derived before in Blyth & Pozrikidis (2004b) for
an inclined channel. We find it convenient to briefly re-derive them for our horizontal
channel case and somewhat different coordinate and non-dimensionalization choices.

It is well known that in this approximation the pressure disturbances are independent
of the vertical coordinate, and the horizontal velocities satisfy the second-order

differential equation

D= -, (3.1)
] m‘p]x’ .
J
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where we have dropped the tildes in the notations for the disturbances (for the sake of
brevity). (As will become clear later, this equation combines the orders 1/L and 1/L?
(corresponding to its real and imaginary parts) relative to the interface displacement n
(see appendix A).) The general solution satisfying the no-slip conditions at the plates
is
1 2 2

uj= T%ij(z —n;) + Az —ny, (3.2)
where the functions A; are independent of z and may be interpreted as vorticity
components; they will be determined later on. In this formula and below, by definition,
n; has the values n; = —1 and n, =n. The vertical velocity disturbance is determined
by the continuity equation (2.3),

DWj = —Uj. (33)
The general solutions satisfying the zero velocity conditions at the plates are then

1

3 2 3 1 2
o (=27 +3nz = 21 )pjux — E(Z — 1)) Ajs. (3.4)
7

Wi

The normal stress condition (2.8) yields
II[n, I'l:=p1 — py = Bon — 01y, (3.5)
where

_ (01 — 02)8d;
00

Bo: (3.6)
is the Bond number (equal to the difference of the Bond numbers of the layers, Bo; —
Bo»,), and we write o in the form o0 =1 — Mal", where I := f, the disturbance of
the surfactant concentration. Note that clearly a positive Bo corresponds to a gravity
force acting in the direction from the lighter to the heavier fluid, and the negative Bo
corresponds to the opposite direction of the gravity forces. In the latter configuration,
gravity has a destabilizing effect corresponding to the Rayleigh—Taylor instability. To
estimate the range of the Bond number, for the Earth’s gravity, g~ 10* (in cgs units),
p1 ~ pa ~ 1, oy ~ 10, we obtain |Bo| ~ 10*> for d; ~ 1 and Bo ~ 1 for d, ~ 107"
Also, Bo < 1 for small density contrasts, |p; — 2] < 1, or even for |p; — py]| ~ 1
under microgravity conditions. (Note that although 7, ~ n/L* where L is assumed
large, the two terms of (3.5) are comparable for Bo/o of the order 1/L?. In fact, we
find below in § 6 that in the nonlinear evolution, the length scale L might develop to
be L= 0(y/o/Bo) or, since o ~ 1, in view of (2.11)-(2.12), with |I" — 1| =0O(1) or
smaller, L = O(Bo~'/?) (see, e.g. the discussion in § 6.1, between equations (6.4) and
(6.5)).) The tangential stress condition (2.7) yields

Du; — mDuy(=o,) = —Mal,. 3.7
Hence we can eliminate p,, and A,:

P2 =pi— I, (3.8)
1
Ay = ;(Al + Mal’, + I1n). (3.9)
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We substitute these into the expressions for u, and w,, and apply the continuity of
velocity conditions, equation (2.6), at the interface z =n, that is, u; + u; =it + u,, or

Uy —up = s1, (3.10)

m
and
wp=Wwy (311)

to obtain the following system of equations for p;, and A;:

(=m+n* 4+ (m— Dn*)pie + 2(m+n+ (m — DA,
= —2(m— 1)sn +2(—n+ n)Mal, + (—n + n)*I, (3.12)

and

Qm+n’) +3(m—n*)n— (m— D )pi,+3(—=m+n* —2m+n)n — (m — DHn*)A,
=3(m— D)sn* —3(—n+n)’Mal, — 2(—n+n)*IT, + C(2). (3.13)

Note that the second equation contains an arbitrary function C(¢) that does not
depend on x, obtained by integrating (3.11) which contains the derivatives pi,, and
Ay, Solving this linear system, we can express p;, and A;, and therefore all the
velocities, in terms of n, I, I1[n, I'] and C(¥):

pre = =D ntmmin+ D (gt pMar,
(n— 77)2 2 2
i [-@4+4n)ym —n" —2(m —n+2mn)n + (m — 1)n~111,
2
+5(m+n+(m— Dn)C() (3.14)
and
A = —@n[4(m+n3>+3<m—n2>n+(m— Dn’]
+ (772_)”) [(4+3m)m+n’ +3(m—n*)n —3(m — Dan* + (m — Dy’ Mal,
(n —n)2 2 2 3
+ [2m(n+41)+ (m—n")n —2(m — nn” + (m — 1)n’ 111,

_ (=m=n*)+(m—Dn?
D

C(@). (3.15)
Here the determinant D is

D=(m—1)’n*+4m—1)(m+n)n* +6(m — 1)(m —n*)n* + 4(m — ) (m+n’)n + ¢,
(3.16)
where constants ¢ and i are defined as follows:

o=n>+3n"+3mn+m (3.17)

and
Y = n' + dmn’ + 6mn* 4 4mn + m?>. (3.18)
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The function C(#) is obtained by the boundary conditions in x. We adopt the
condition of periodicity of pressure over the x—interval of length A similar to Blyth
& Pozrikidis (2004b). (The periodic boundary conditions pertain to closed flows such
as the Couette flow in a circular toroidal channel with a rectangular cross-section of
Barthelet, Charru & Fabre (1995). For rectilinear channels, we expect solutions which
are largely independent of the boundary conditions at the channel ends if the channel
is sufficiently long.) Then

A
/ prdx=0. (3.19)
0

From this equation one obtains an explicit expression for C(¢) in terms of the integrals
over that interval. Thus, C(¢) is a functional of n and I".

To obtain the evolution equations, we substitute the velocity field, (3.2) and (3.4),
into the kinematic boundary condition (2.10) and the surfactant transport equation
(2.9):

s

2, 1 2L, _
X +2(1+n) ( 3(2 n)p1x+A1>} =0, (3.20)

nz+|:

X

I+ |:<s77_;(1_772)p1x+(1+77)141) (1+F)] =0, (3.21)

X

where p;, and A; are given by (3.14) and (3.15) respectively, and we have omitted
the tilde from the disturbance of surfactant. We will solve this system of strongly
nonlinear evolution equations, (3.20) and (3.21), numerically, when we discuss
nonlinear results in § 6.

The regimes in which n and I" are much smaller than unity may be described by
weakly nonlinear equations which are obtained from (3.20) and (3.21) by neglecting
those nonlinear terms which are clearly smaller than some other terms:

2(m — Dr’(m+ Ds _ (m+ n)n’Bo

N x T x XX
N+ SN nn v n 3y n
3 2 2
—n*)M
L e O (3.22)
3y 2y
and
(n+ Dos n?(n* — m)Bo n?(n* —m)
I N x x XX XXXX
¢ + SN, + 1, 2y Nex + 2y n
HM.,
_nmtn)Ma (3.23)
14
where
-1 4(m—1n]?
N =1+ (m )[—m+4n—3n2—8n3]+ [(ml/f)n] m+nrH)m+1),
2(m—1) 3 m—17° 3 2 3
N2=T[3n(n—|—1)—4(m—|—n)]+8 ” (m+n’)(m+3n° +4n°).

(3.24)
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We need to keep the nonlinear term in (3.22). Even though it appears that it can
be neglected as compared to the term with the linear term 17,, the latter will be
eliminated by a coordinate change, x — x + V¢ where V is the coefficient of 75, in
(3.22). However, we will discard the nonlinear term from (3.23), since in the latter
the larger (by a factor 1/n) linear 7, term is not eliminated by this coordinate change.
Also, calculating C(¢#) (from the spatial periodicity of the pressure; see the paragraph
that follows equation (3.18)), one finds that C(¢) is proportional to the average of
n*. (Actually, it is not difficult to see that in the limit of very long channels the
same conclusion holds for other boundary conditions with the end-point data being
arbitrary but bounded functions of time.) So, its contribution in (3.20) and (3.21) for
small n and I' is at most of the orders n’n, and n*I, and therefore is neglected
in the system (3.22)-(3.23) in comparison with the nonlinear terms. These weakly
nonlinear evolution equations do not imply any restrictions on the parameters beyond
the lubrication approximation, and in this regard are different from the equations
of Frenkel & Halpern (2006), Bassom et al. (2010) and Kalogirou et al. (2012),
which assumed a small aspect ratio 1/n (and in some cases other restrictions on the
parameters). In particular, in those papers the lubrication approximation was used for
the thin layer only.

We remind the reader that in view of our derivation, it is clear that the system
of (3.22)—(3.23) allows for relative errors of the order O(1/L*), where L is the
characteristic length scale of solutions which is assumed to be large. The same is
true of the strongly nonlinear system (3.20)—(3.21).

Below, we encounter weakly nonlinear regimes in which saturated 5 is small but I
is not small. Then, from (3.21) we see that a nonlinear term of the form Nss(nl),,
should be added into the transport equation (3.23) where

+1
Ny =t De (3.25)
v
the coefficient of 7, in (3.23).
From the system (3.22) and (3.23), we can obtain the linear stability equations for
the normal modes of disturbances,

(n, I') = [h, Gle™*", (3.26)

where « is the wavenumber of the disturbance, G and & are constants and the
(complex) y is called the increment; in terms of its real and imaginary parts,
y = yg + iy;, where the real yx is the growth rate of the normal mode. The
stability of the flow depends on the sign of yg: if yx > 0 for some normal modes
then the system is unstable; and if yx < O for all normal modes, then the system is
stable. The complex amplitude % is arbitrary; we choose it to be real and positive.
We substitute (3.26) into the linearized equations (3.22) and (3.23) to obtain the
following equations for y and G:

2(m — Dr*(n + l)sh e (m +n)n3Boh+a2n2(m —nHMa

.
vh=e v 3y 2y

G, 3.27)

and
o (n+ 1)¢sh N (m — nz)nzBoh ) (m + n*)nMa

C=—
L v 2y v

G. (3.28)
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(Note that we have retained terms up to o2, but discarded the (capillary) o
terms corresponding to the fourth-derivative terms in the weakly nonlinear system
(3.22)—(3.23), since we are interested in the threshold of instability only, and the
latter is determined in the long-wave limit, @« — 0. Also, note that, as is clear from
the linearization of (2.10), in which the last term vanishes since the base velocity is
zero at the interface, z =0, the right-hand side of (3.27) is w;(0). Hence,

w1(0)

P (3.29)

which is used below.) This system of linear homogeneous equations for the amplitudes
h and G (3.22)—(3.23), which has the matrix form

2

o (m—Dn*(n+1)s n*(m+n)Bo n*(m — n*)Ma
— 1 _——

o — a?

14 2y 14
(3.30)

has non-trivial solutions only if its determinant is equal to zero. This requirement
yields a quadratic equation for y:

W 3 2w | [n] _To
(n+ Dos n*(m — n®*)Bo n(m+n>)Ma ,| |G|~ |0
1 y+——a

Yy’ 4y +c=0, (3.31)
where
¢1 =n(m+n’)Maa® 4 3n°(m + n)Boa® — 2in* (n + 1) (m — 1)sa (3.32)
and
co = 15n*MaBoa* — Jin*(n* — 1)Masa’. (3.33)
The two solutions of (3.31) are
y = ZL(—Q + [eF — 4vrco]'P), (3.34)

where the square root here has two (complex) values, and only the leading terms in
a should be kept for the real part of y (the growth rate) and the imaginary part of y
(which determines the wave velocity). Thus, for given parameters and the wavenumber,
there are, in general, two distinct complex values of the increment y. (We note that
keeping the capillary terms which are proportional to o* in (3.27) and (3.28) amounts
to changing Bo into Bo + . Then the same change occurs in ¢;, equation (3.32) and
co, equation (3.33). This will lead to a higher-order correction to the leading-order
growth rate (4.3). This correction does not affect the long-wave instability threshold
(see (4.14)). It will determine the stabilization at shorter waves which we do not
consider in the present paper.)

One can see that the dispersion function yx (as well as the increment function y)
has the following ‘symmetry’ property

yr(—na; ns, m~', n7', Ma, nzBo) = nmyg(«; s, m, n, Ma, Bo). (3.35)

It is verified by changing ¥ — mmy in the dispersion equation (3.31), and o — n’a?,

s—>ns,m—m ', n—>n_, Ma—>Ma and Bo— n’Bo in the coefficients c,, ¢; and V.
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In fact, this transformation is inferred by looking at the flow from the ‘upside down’
point of view, as was mentioned in the preceding section. This implies the relations
(with the left superscript indicating the quantity in the new coordinate system) "d; = d,,
"dy=dy, "p1 = ps, "P2 = p1, "1 = W2, and ", = g, so that "'m=1/m, and "n=1/n.
Also, "x* = —x*, "z*¥ = —z* (note that "z=2=1(0, 0, 1)) and "t* =* so that "x = —x/n,
"z = —z/n, "t =t/(nm) and "a® = n*a®. (Note that we used non-dimensionalization
(2.2) based on the bottom layer, so that the units of measurement used there change
since "d; = d,, etc.) Furthermore, we have "Uj = U;, "U; = U}, "n* = —n*, and
"g=—g so that "Bo=n?Bo. We find that "s =ns and "y =mny. With the appropriate
transformations of the velocities and pressures ("v] = —v3, etc.; "p} = p3, etc.), the
governing equations are invariant under the ‘upside down’ transformation, and we
recover the same dispersion relation. This implies the symmetry property given by
(3.35). In view of this symmetry of the growth rate function, it is sufficient to consider
linear stability for n > 1. This range of n is also sufficient for nonlinear disturbances
(see §6), for the same reason.

Considering the limit of vanishing Ma, one observes that the product of the
increments of the two modes, cy/v¥, vanishes. So, at least one of the increments
vanishes. However, the other increment cannot vanish, because the sum —c;/y of
the two increments, the roots of the quadratic equation, does not vanish. We call the
non-vanishing continuous branch of the increment (and of the growth rate function)
the robust branch, and the other one the surfactant branch of the increment (or of
the growth rate). Correspondingly, we sometimes speak of the robust and surfactant
branches (sets) of normal modes. (The robust mode is similar to the ‘interface mode’
of two-layer surfactant-free flows down an inclined plane (see Gao & Lu 2007,
Samanta 2014 and references therein) in that both do not vanish in the limit of
surfactantless flows. Wei (2007), considering some single-fluid surfactant-laden flows,
calls the mode corresponding to our robust mode the ‘interface mode’. We, however,
prefer the term ‘robust mode’, in order to avoid confusion due to the different
meanings of the term ‘interface mode’ as used in the aforementioned references.)
Thus, there is just a single robust normal mode and a single surfactant mode for each
wavenumber.

4. Increments, thresholds of instability, eigenfunctions and phase shifts
4.1. Two leading orders of long-wave increments and eigenfunctions

In this section we find the power series expansions in o« of the increment y for the
case s # 0, as well as for the case s =0 and Bo = 0, a solution to the quadratic
equation (3.31), in the form

y=ilo +Ra* 4 - -, 4.1)

where I; and R, are real and depend on the coefficients of (3.31). In ¢;, we denote cy;
the coefficient of io and ¢, the coefficient of «?. Similarly, in ¢, the coefficient of
io® is cg3 and the coefficient of a* is cos. Note that these coefficients are all real. For
the first branch, by substituting (4.1) into the quadratic equation (3.31), and balancing
the terms proportional to o,

gl 2+ D = D @)
v v
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where the last explicit expression for /; has been obtained by substituting c¢;; from
(3.32). Then, balancing the o’ terms, we obtain R,, the leading order of the growth

rate, 5 \
(em=n)  watm)
VR~ <4(1 — m)wMa 731# Bo) o, 4.3)

(In this section, we will confine ourselves to the case m 7% 1. The special case m =1
is considered in § 5.4; in particular, the growth rates are determined by (5.57).) Also,
the leading-order phase velocity is ¢ = —(Imy)/o = —I,. (We note that this ¢ is
independent of wavenumber, and thus can be made zero for all o at once by the
Galilean transformation to the reference frame moving with velocity c¢. To find the
leading non-constant phase velocity, we would need the next correction in «?® to the
lubrication approximation. This is not included here due to space limitations, but is
found in the more detailed version Frenkel & Halpern (2016). In this connection, it is
notable that the lubrication approximation (3.1)—(3.11) (as well as many other similar
lubrication-approximation formulations such as those in Oron et al. 1997; Babchin
et al. 1983; Charru & Hinch 2000; Blyth & Pozrikidis 2004b; Wei 2005) corresponds
to the leading order of expansions in the powers of the small quantity «, in which
the coefficients are two-term expansions in powers of i (with coefficients that are
real except for some special cases such as when m=1, see §5.4). Thus, two leading
orders in the small wavenumber « are captured by the lubrication approximation.)
For the other mode, we have

y =Sa* +ikze’ + - - (4.4)
and find S; = —cg3/c1;. This gives the growth rate

(n—DMa ,
~N———a”.

Sl T (4.5)

VR

(When n=1 only, this expression equals zero, and the leading non-zero term has the
form k,a*; the expression for the coefficient k, is found in the appendix A of Frenkel
& Halpern (2016).) We also find the leading term of Im(y) to be

2
Co3 C12€03 Cos

Js = wcT a cl
1 1 1
n(m — n*)Ma <(n — 1)¢Ma Bo>
= - — . (4.6)
8(m—1)2(n+ s \ 4n3(m—1) 3

The leading term of Im(y) is Jza®, and hence the leading phase velocity is ¢ =
—Im(y)/a = —J3a. Thus, in contrast to the other branch, all the modes cannot be
eliminated at once by applying an appropriate Galilean transformation.

The growth rate (4.3) is a continuous function of « which is identified as the robust
branch of the growth rate since it is non-zero even at Ma = 0. The other continuous
branch of the growth rate, equation (4.5), that vanishes as Ma — 0, is the surfactant
branch.

We note that there is another way to obtain the consecutive terms of the power
series for thevincrement 7 =rby| shuttling between the thickness and surfactant
equations (3.27) and (3.28), with increasing powers in «, to find the consecutive
terms of the power serics for the quantities G/h and y in turn. (This is equivalent
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to the method of undetermined coefficients.) It works slightly differently for the two
modes, as follows:

For the surfactant mode, start with the thickness equation (3.27) at order «! to find
G/h to its leading order o~'. Use this in the surfactant equation taken at order o' to
find S,. Apply the latter in the thickness equation at order ® to find the «® correction
to the G/h. Return with the latter to the surfactant equation taken at order o’ to
find J3.

For the robust mode, start with the thickness equation (3.27) at order «! and find
I;. Use it in the surfactant equation at order a' to find G/h to its leading order
a’. Then the thickness equation at order o yields R,. Next, the surfactant equation
taken at order a? yields the a' correction to G/h. The resulting expressions for the
eigenfunctions G/h are as follows. For the robust branch,

T v Bo _,(n=DMa
+1ot4(m —D2n(n+1)s (3 4(m — 1)n3> ) 4.7

h 2m2(m— 1)

and for the surfactant branch,

G _ 4n+Dm-—Ds ( Yn—1) 3 ZBon(n+m)>
B —mMa 22 —m)m—1)  3Ma(i—m) )

(4.8)

Note that for m =n? (3.20) and (3.21) imply that for the surfactant branch & =0 and
G 1is arbitrary, and yy is consistent with (4.5). The latter two equations will be used
in §4.3.

For the case s =0 and Bo =0, finding the leading-order growth rates requires the
inclusion of capillary, fourth-derivative terms, which are found in the weakly nonlinear
equations (3.22) and (3.23), and in the linear equations (3.27) and (3.28). The leading-
order balance of the capillary and the Marangoni terms (the last two terms in (3.22))
yields in terms of the normal-mode amplitudes

G 2(m+n)n

Z_ g . (4.9)

h  3Ma(m — n?)
The leading-order balance in the surfactant transport equation involves three terms: the
time derivative term; the capillary term; and the Marangoni term. Substituting in there
h in terms of G from the preceding equation yields the growth rate of the robust mode:

3
n 4

—_——a".
12(m + n3)
For the surfactant mode the capillary effects are negligible. So, the leading-order

balance in the surfactant transport equation involves just the two terms with G, and
immediately yields the growth rate:

YR= (4.10)

3
M.
yR:_MOﬁ_ 4.11)
4
Substituting this into the kinematic condition yields
G 3
G__,m+n) (4.12)

h = nm—n?)’

These results are in agreement with FH.
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Finally, for the case s = 0 and Bo # 0 there is no universal expansion of the
increment in powers of «. However, it is easy to see that both modes are stable if
Bo > 0 but there is instability if Bo < 0. Indeed, if Bo <0 then ¢y = (1/12)n*a*MaBo <
0 (see (3.33)). Therefore in (3.34), the discriminant ¢? — 4ycy > ¢? (note that for
this case (3.32) yields ¢; = na*((m + n*)Ma + n(m + n)Bo/3)), and (3.31) yields
one positive growth rate value, so we have an instability. This is essentially the
Rayleigh-Taylor instability of a stagnant two-layer arrangement modified by the
surfactant. On the other hand, if Bo > 0, then ¢y > 0 and ¢; > 0, but the discriminant
can be either positive or negative. If it is negative, then the square roots in the
solution (3.34) are purely imaginary and therefore both values of yi are negative. If

the discriminant is positive, then |y/ci — 4 ¢o| < ¢y, so that both values of y given by
(3.34) are negative again. It is clear that in all these cases y oca?. After the increment
y 1is determined from (3.34) (where the two possible values correspond to the two
different modes), the eigenfunction G/h is found from the kinematic condition (3.27)

. G 2
(1# _2 +(m+n)nBo>‘

— = 4.13
n? 3 @13

h~ (m—n?)Ma

We note that a growth rate ‘superposition principle’, yz(Ma, Bo) = yr(Ma,0) +
yr(0, Bo), holds for the robust branch at the leading order of (4.3). (The purely
Marangoni growth rate yz(Ma,0) is the one found in FH, and the other, purely
Bond, term gives the well-known growth rate of the (surfactantless) Rayleigh—Taylor
instability.) In contrast, the leading-order growth rate of the surfactant branch, equation
(4.5), is independent of the Bond number; the latter appears at higher orders, and is
always multiplied by some positive power of the Marangoni number (see appendix A
of Frenkel & Halpern (2016)).

4.2. Instability thresholds in the three (n, m)-sectors

From the long-wave approximation of FH, for Bo = 0, three sectors were identified
in the n > 1 part of the (n, m)-plane as regards the stability of the flow. The same
three sectors turn out to be relevant even when Bo # 0 (as in our present case): the
Q sector (1 <n? < m); the R sector (1 <m < n?); and the S sector (1 <n < oo and
0 <m < 1). (The boundaries between the sectors m =n? and m =1 correspond to the
numerator and denominator respectively of the coefficient of the Marangoni number
in (4.3). Therefore it is clear why they appear for the inertialess case of FH, with
zero gravity and non-zero Marangoni number. We note that the same curves, m = n’
and m =1 appear as neutral stability curves in the corrected figure 2 of Yiantsios &
Higgins (1988) (see the correction Yiantsios & Higgins 1989) for the case with neither
surfactant nor gravity effects, where the instability hinges on inertia — despite the fact
that Poiseuille flow, and not Couette flow, was the focus of attention in Yiantsios &
Higgins (1988). Part of the reason for this is that the leading-order disturbance flow
of the robust mode (obtained in §5.4; see (AS)) is a propagating wave which does
not depend on the factors responsible for the growth or decay of the disturbances —
such as inertia, gravity or surfactant effects. (Also, it does not depend on the details of
the base velocity profile other than its interfacial slope.) Therefore, this leading-order
disturbance flow, which contains the expressions m —n®> and m — 1, is essentially the
same (up to a scaling factor) for the Yih instability, the surfactant instability, or the
Rayleigh=Taylor instability of thevbasic flow, whether Couette or Poiseuille one. Note,
however, that for the inertial instability of the Couette flow in Yih (1967), despite the
fact that the leading-order disturbance flow is still the same, the curve m=n? is not a
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FIGURE 2. The (n, m)-plane (for n > 1) consists of three sectors (Q, R and S) which
differ as regards the flow stability properties.

curve of neutral stability. This is related to the following difference between the Yih
instability and the inertialess instability. For the latter, the momentum equations for the
correction of the disturbances are homogeneous, not depending on the base flow. Thus,
they are the same for the Poiseuille flow u; = (sz + ¢z%)/m;, with g(m — n*) = s(n +
m), as for the Couette flow, equations (2.13)—(2.14). In contrast, for the cases with
non-zero inertia, the momentum equations for the disturbances at the correction order
are non-homogeneous with their sources depending on the base flow and the leading-
order disturbance of the flow. This is why the linear inertial instability results for the
Poiseuille flow of Yiantsios & Higgins (1988) differ from those for the Couette flow
of Yih (1967) and of Charru & Hinch (2000) while the inertialess surfactant instability
results would be the same for the Poiseuille flow as our results for the Couette flow.)
Figure 2 shows the three sectors and their borders. Stability properties of the robust
and surfactant modes can change significantly as one moves from sector to sector.

In both the R sector and the Q sector, according to (4.5), the surfactant branch is
stable for all Bo. From (4.3) we can infer that the robust branch, is unstable if Bo <
Bo.;, where the threshold value is

2
_4n3(3n(f(—ml)(z i oy Ma.

Bo, = (4.14)

This condition holds for all three sectors, as does also the fact that gravity is
stabilizing for Bo > 0 and destabilizing for Bo < 0. In the R sector, the Marangoni
effect is destabilizing and, from (4.14) with m < n?, we have Bo., > 0. Gravity
renders the flow stable for Bo > Bo.., but for positive Bo below Bo.;, the flow is
still unstable (and it is unstable for all negative Bond numbers). In the Q sector, the
Marangoni effect is stabilizing, Bo. < 0, and gravity renders the flow unstable only
for the negative Bond numbers below Bo.. In another interpretation of the same
relation, we say that surfactants with a given Marangoni number can stabilize the
Rayleigh—Taylor instability, provided that Bo is above the threshold (4.14)

From (4.14) the ratio Bo., /Ma is a function of m and n only, and its graph is a
surface in the (n, m, Bo./Ma)-space. Figure 3 represents the surface of the threshold
ratio Bo. /Ma for the R and Q sectors combined, that is for the region n > 1 and
m=> I Insparticular; figure 3 reflects the fact (which is clear from (4.14), in view of
the factor m — 1 in the denominator) that Bo., 1 oo as m | 1 at a fixed n (which implies
the R sector). This growth of Bo., as m | 1 is especially pronounced for larger aspect
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FIGURE 3. (Colour online) The ratio Bo. /Ma as a function of the aspect ratio and
viscosity ratio for n > 1 and m > 1 (in the R and Q sectors). Here Ma=0.1 and s=1.

ratios, as we see in the figure for the largest value included, n =4; while for n=1 the
critical ratio is constant, Bo. /Ma= —3. (Because of the threshold ratio being infinite
at m=1, it is impossible to include in the figure all the values of m down to m=1;
the cutoff in the figure 3 is at m=1.3.) Also, from (4.14), Bo., | 0 as m— n* (in both
R and Q sectors). In figure 3, the corresponding zero-level horizontal cross-section is
highlighted to appear different from the other horizontal cross-sections; it is, clearly,
the curve m =n? in the coordinate (n, m)-plane. In contrast to the R sector, in the Q
sector the (negative) Bo.;, is bounded: equation (4.14) has a finite value at n=1, and
a finite limit as m 1 oo, since the expression ¢ (see (3.17)) is linear in m.

In the S sector (1 <n < o0 and 0 < m < 1), the robust branch (4.3) is unstable
when the Bond number is below the threshold value given by (4.14) (which is
negative in this sector since the Marangoni action is stabilizing, in contrast to the R
sector) and stable otherwise. As to the surfactant branch in this sector, equation (4.5),
which does not contain the Bond number, indicates instability. Thus the surfactant
mode is unstable for any Bo provided « is sufficiently small. The conclusion that no
amount of gravity can completely stabilize the flow may come across as somewhat
counterintuitive.

We have omitted the stabilizing effects of capillary pressure since, as was explained
before, we are concerned with the instability threshold and this is determined in the
long-wave limit, in which these effects are negligible. More detailed linear stability
results, including the asymptotic properties of the growth rate near the marginal
wavenumber and also on the borders between the O, R and S sectors, are found (in
a different way) in Schweiger (2013), and will be further investigated elsewhere.

4.3 Phasesshiftssandytheirylimitations as regards criteria of stability

The surfactant-interface phase shift, 6; := arg(G/h), —mt < 6 < m, was considered
in FH for a particular case, with no gravity, m = 1, and in the limit » — oo, in
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FIGURE 4. (Colour online) Dependencies on the Marangoni number for the robust mode
in the R sector, with m =2, n =100, s =10 and « = 107*: (a) growth rate; (b) phase
difference between the disturbances of the interfacial vorticity and the interface; and (c)
phase difference between surfactant and interface disturbances. Here Bo = Bo. (Ma) =1,
so that, as (a) shows, the growth rate y, crosses 0 at Ma=1.

order to make a plausibility argument about how the instability was possible — since
there seemed to be in the literature the (erroneous) idea, based on systems with no
base flow, that the surfactant is always stabilizing. The plausible ‘rule of surfactant
phase interval’ seemed to be that stability corresponds to the phase shift being closer
to the in-phase case, that is to being in the interval (—m/2, /2) (excluding its
(corresponding to neutral stability) midpoint, 8 = 0). The analysis of the expressions
(4.7) and (4.8) shows that in the absence of gravity this rule works also for the case
(not considered in this regard in FH) with m # 1, and (bounded) channel flows. (See
details in Frenkel & Halpern 2016.) However, in the presence of gravity this phase
interval rule is fallible: figure 4, panel (c), shows that 8; remains in the same interval,
close to m (or, equivalently, to —m), as Ma is increased through the threshold value
Ma = 1, so that stability gives way to instability (as the yi shown in panel (a) of
that figure testifies).

In Wei (2005) (referred to as W below), the attention was directed to the phase
shift 6, between the bottom-layer vorticity w; and the interface h, 6, := arg(w,/h),
—7 <60, <7, to argue that the vorticity @ is key to the instability mechanism, the
same as was shown to be the case in Charru & Hinch (2000) for the same Couette
flow, but with no surfactant, with the instability hinging on inertia. In contrast to W,
we allow for non-zero Bond number values (with the same assumptions of s 0 and
negligible capillary pressure as in W). Considering this more general case enables one
to uncover the limitations of the statements on correlation of stability/instability with
certain two non-intersecting subintervals which sum up to the full range of 6,. The
y-component of the interfacial vorticity in the lower layer, denoted by w;, is, to the
leading order in c,

0 =12 =0)= A (4.15)

from (3.2). (Note that the sign in (4.15) is opposite to that in W. This is due to the
fact that our coordinate axes are related to those of W by a rotation about the x-axis,
so that our spanwise axis (our y-axis) is directed opposite to that of W (his z-axis).
This is the root of the opposite signs difference between the two spanwise components
of the vorticity vector:)  To find the phase 6, of w,/h, we substitute the normal-modes
expressions for n and I' into the linear form of (3.15) to obtain A; in terms of A
and G, and then substitute G in terms of 4 from (4.7) for the robust branch or (4.8)
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for the surfactant branch to find, to the two leading orders in i,

for the robust branch, and
w  4m—=1)s . 2n’Bo @ + 3nm + 4m)(n — HMa
BT wr—m <3(n2—m) T 2 —mym—1) ) @-17)

for the surfactant branch. (See details in Frenkel & Halpern 2016.) The ‘rule of
the vorticity phase intervals’ that W suggests is that the interval (—m, 0) of 6,
corresponds to stability and the interval (0, w) to instability. Our asymptotic analysis
and numerical results show that even for large n, this may not hold in the presence
of gravity. (See details in Frenkel & Halpern (2016), where it is also explained
why the argument of W holds only if the Bond number and the vorticity of the top
layer are sufficiently small (as determined by other parameters).) For example, panel
(b) of the robust branch figure 4 shows that as the Marangoni number increases
through its critical value, so that the instability growth rate increases from small
negative values through O to small positive values as the instability sets in, the phase
difference 6, remains slightly below m, that is inside the interval corresponding to
stability according to the rule of the vorticity phase intervals. A similar figure for
the surfactant branch (not shown here because of space limitations, but included in
Frenkel & Halpern (2016) as figure 4) also demonstrates the violation of the rule of
the vorticity phase intervals.

In general, it is clear that, dynamically, only the surfactant is responsible for
instability in the absence of gravity. The non-zero vorticity component is just one
of the kinematic fields that are present even in the absence of surfactants. It is
interesting to consider, instead of vorticity, the upward component of the disturbance
velocity, wy, in the bottom layer. From the linear kinematic equation (3.29) it follows
that Yz = Re(w;(0)/h) (and the wave velocity ¢ = —a~'Im(w/h)). Hence, one obtains
the universal ‘rule of the velocity phase intervals’ for stability/instability: we have
instability when 6,,, the phase shift of the upward velocity w;(0) relative to the
interface is in the interval (—m/2, t/2), and stability corresponds to the interior of
the rest of the interval (—m, ), that is the open region (—m, —7/2) U (1t/2, m). This
rule holds even in the presence of gravity. However, to use it as a meaningful tool
for deciding stability, one needs to find the velocities of the normal modes (without
first finding the increments). This is done in the next section, where, however, the
real part of w(0) is used rather than its phase, and the instability mechanism is
formulated in terms of the horizontal velocity constituents which have a quarter-circle
phase shift relative to the interface wave.

5. Instability mechanisms: Marangoni stresses and out-of-phase velocities

In this section, we endeavour to elucidate the mechanism of instability for the two
branches of normal modes, somewhat in the spirit of Charru & Hinch (2000) (CH
for short). Like them, we will sometimes use dimensional quantities. For simplicity,
we omit the stars in their notations for the latter, and also omit tildes denoting
disturbances; the context indications are sufficient for avoiding confusion. Like in
CH, we first consider the case with large aspect ratio n and no gravity; these
restrictions will be relaxed in the last subsection of this section. (However, unlike
CH; interfacial surfactant is present, and may cause instability despite the absence of
inertia. In contrast, inertia is necessary for Yih’s instability treated in CH.) Similar to
CH, all parameters other than » are tentatively assumed to be of order one.
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5.1. Robust branch in the limit of large aspect ratio

Considering a small-amplitude, normal-mode disturbance of the interface, n =
h exp(Xt) cos a(x — ct) (where X := Re(y) is by definition the growth rate, the
real part of the increment, and ¢ := —a~'Im(y) is the wave velocity), and first
neglecting the surfactant disturbance, we can repeat the considerations of CH to find
the same leading-order disturbance flows. Namely, the disturbance flow in the thick
layer is a pressure-gradient-driven one with the zero net flow rate, that is (omitting

hats for the amplitudes)
Z Z
= 1—— 1-3—|. 5.1
Uz = Uy < d2> < d2> (5.1

1o := 12(0) = MS

Here
h, (5.2)

1%}
where s is the (dimensional) base shear rate. (Note that the latter equation corresponds
to the interfacial boundary condition for streamwise velocity components, equation
(3.10) with u, = u,(0) and u; = u;(0), in which u;(0) is neglected since it is much
smaller than u,(0).) Clearly, the pressure gradient is 6u,uo/ds. Its interfacial shear
stress drives a Couette flow in the thin layer,

W2/ z
— 4 1+2). 53
" ”"dz/ch(*dl) (53)

(The two tangential stresses, of (5.1) and (5.3), are equal as they should be since for
this branch the surfactant Marangoni stress is negligible at the leading order.) The
balance of mass in a control volume [0 <x < A/2, z< 0] over a short time 0 <t < §¢
gives, exactly as in CH, the wave velocity

c (m—1)

—=-2 . 54
Sdl n ( )

(This result corresponds to the large n limit of (4.2). Notably, the sign of ¢ is opposite
to that of m — 1. We note also that while u,(0) ~ (1/n)°, the transverse differentiation
reduces the order: Du,(0) ~ (1/n)', which is then the order of the tangential stress;
and D?u,(0) ~ (1/n)?, which is clearly the order of the pressure gradient 6u,u0/d3.)
However, instead of originating from inertia, in our case the velocity correction to
this flow, denoted u}!, comes by the Marangoni action of the surfactant disturbance
I' = |G| exp(X't) cos(a(x — ct) + Or), where 6 is a phase shift (undetermined
for the moment), that is the argument of the complex amplitude of the surfactant
eigenfunction, G = |G| exp 10r. The Marangoni tangential stress should balance the
viscous stress of the thin film, as the thick film contribution is much smaller in the
interfacial condition (3.7); indeed, the interfacial (correction) velocities of the layers
must be equal, and then the shear rate in the thick layer is d,/d, times smaller than
in the thin one. Thus, we find the linear velocity profile (satisfying also the no slip

condition at the bottom plate):
! = — 2 MaiaG(z + dy). (5.5)

puilo

(This corresponds to the large n limit of the dimensionless equation (A 6). Similarly,
u’zw would correspond to (A 8); however, like in CH, it is not needed in the argument.
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(b) 6

Unstable

Stable

FIGURE 5. An illustration of the instability mechanism for m=2, n=6, s=1, Ma=0.01,
Bo=0 and a =107*. The velocity profiles at the end points of the control segment, 1/4 <
x < 31/4 where 1 =2n/a is the wavelength, are shown for dimensionless out-of-phase
disturbance velocities corresponding to (5.10) for the robust mode in (a). (b) Corresponds
to the surfactant mode, which is stable for the same parameters.

See an example of the profiles of these velocities in figure 5.) Note that the velocity
phase here is 90° less than that of the surfactant. The surfactant transport equation
(2.9), at the leading order, yields

Lo n L@ =0 (5.6)
— —_— u = N .
or  Vgx

where [} is the (uniform) base surfactant concentration and #;(n) = sn is the base
velocity of the thin layer (2.13). Hence, in terms of the amplitudes, we get, at the
leading order,

—icaG + Iysich =0, 5.7
or r r
G=hn-Y—_p__ " (5.8)
c 24, (m—1)

where the second equality follows from (5.4) which is the dimensional form of the
large n limit of the leading order in (4.7). (It follows that for m > 1 the phase shift of
the surfactant wave relative to the interface displacement wave is 6 = m, i.e. they are
in anti-phase, and for m < 1 the phase shift is zero, so the surfactant disturbance is in
phase with the interface displacement.) Substituting (5.8) into the velocity expression
(5.5), we obtain the flow in terms of the interface displacement amplitude h:

M P Maie—" (2 41). 5.9
uy alaZ(m—]) d1+ (5.9)

Since this velocity amplitude is purely imaginary, the velocity is out of phase with the
interface, either by 90° for m > 1, or —90° for m < 1. (We note that there is another
correction velocity, of order (1/n)?, needed to satisfy the normal stress condition, the
equality of pressures. However, its amplitude is real and hence it is either in phase
or anti-phase with the interface, and not £90° out-of-phase as in (5.9). Therefore, it
leads to a small correction to the wave velocity, but is irrelevant to the growth rate.)
The growth rate is found, as in CH, from the mass conservation law, by equating the
change of volume of the thin layer over the interval 1/4 <x <34/4 (where 1:=27/«
is the wavelength), over a small time interval &z, to the sum of inflow volumes through
the twoboundaries; atrw=/47and x = 31/4 (at which point the flux magnitude
attains its maximum, since| the amplitude of the fluid flux is purely imaginary along
with the velocity amplitude). Here, the inflow through the left boundary is given by
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the midlayer correction velocity, that is half the interfacial velocity at the boundary
location, times the layer thickness d;, and that at the right boundary is similarly equal
to minus the interfacial velocity at that boundary location times d;/2. The velocity at
x=21/4 is u}(0) expiad/4 =iu}'(0), where from (5.9),

i (0) = —h "> Maer —— (5.10)
iu =—h—Mao——. .
! M1 2(m—1)

The expression on the right-hand side here is similarly found to also give the negative
of the velocity at the right boundary, so the two boundary inflows are exactly equal.
(See an example in figure 5(a) which shows the flow corresponding to an unstable
robust mode because m > 1. Panel (b) of this figure shows the flow corresponding
to the surfactant mode which is stable for the same flow parameters as is discussed
below in §5.2.) As a result, the mass conservation equation is

. 31/4 2h2
1u11”(0)d1(81):/h(em’—l)(cosax)dx:—a(8t). (5.11)

/4
Substituting here for iu!(0) given by (5.10), we solve for the growth rate and obtain
1

., oonMad,

Y=ot— . (5.12)
Ay (m—1)

(This result corresponds to the large n limit of (4.3) with Bo =0, and allows one to
identify this mode as the robust one.) Clearly, this corresponds to instability for m > 1.
Recall that for m > 1, the surfactant and the interface displacement are in anti-phase.
For m < 1, we have in-phase propagation of the surfactant and interface displacement
waves, hence the reversed velocities and consequently the stability of the normal mode.
(A (different) link between the surfactant-interface phase shift and the stability of the
normal mode was first noted in FH for a case with m=1.)

A clearly equivalent way to this integral mass (of the fluid) conservation method
of finding the growth rate is as follows. Use the divergenceless relation, with the
horizontal velocity correction u}! given by (5.9), to determine the vertical velocity
correction w)/(z = 0). Then the corresponding (real) correction to the increment is
found from the linearized kinematic equation (3.29) to be X =w!(z=0)/h.

In summary, the growth/decay mechanism for the robust branch is described as
follows. The leading-order flow is the same as in Yih (1967) and leads to the
same, imaginary, increment. Then, the surfactant wave of the normal mode must
propagate either in anti-phase for m > 1 or in phase for m < 1 with the interface.
The Marangoni tangential stress exerted by the surfactant drives a (linear profile)
correction flow whose velocity u}’ is —90° out of phase with the surfactant. Thus,
this velocity is either 90° for m > 1, or —90° for m < 1, out of phase with the
interface. For m > 1, this leads to a net outflow for the half-period part of the thin
layer with the thickness minimum at the middle point, that is instability for the
normal mode, and for m < 1, the velocity is reversed, which yields stability. (Note
thatpinndifferencenwithnthewYihwinstability induced by inertia which was explained in
Charru & Hinch (2000) in terms of vorticity, the latter does not play any natural role
in the mechanism of the surfactant:driven instability.)
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5.2. Surfactant branch in the limit of large aspect ratio

In this subsection we consider the other normal mode, the surfactant mode. It turns
out that here the surfactant effect appears at the leading order of disturbances. At the
interface, the shear stress exerted on the thin layer by the thick layer (whose velocity
is still given by (5.1)) and the Marangoni stress cancel each other to the leading order
in 1/n. Therefore, the velocity is zero to this order, and hence the wave velocity to the
order «, in contrast to the robust mode, is zero. (There is a weak, pressure gradient
related, flow in the thin layer, of order (1/n)? (see (A 1)); however, as was discussed
regarding the robust mode, it is irrelevant to the growth rate, and actually gives a zero
contribution to the increment.) The condition of such cancellation of the stresses is

4
_ 2ol 90 b i G (5.13)
d, I

Using the expression for u,, equation (5.2), we find the following relation between G
and h,

G =it ole Z )5, (5.14)

aMaoyd,

(Note that this is equivalent to the leading order in a' of G/h found from the film-
thickness equation (3.27), as in the first step in the ‘shuttling” method discussed above.
Also, note that this G is purely imaginary (unlike being real for the robust mode),
whereas the surfactant flux is always real at leading-order. Hence, the growth rate of
the surfactant mode is found (immediately below) by using the surfactant conservation
law in integral form.) One finds the growth rate of this branch by equating the change
over a small time §¢ of the total quantity of the surfactant over the interval 0 <x < 4/2,
with the surfactant disturbance inflow through the interface boundaries, at x =0 and
x=A1/2. The inflow rate is, at the leading order, Iyu,(n) = [pshcos ax (note that this
surfactant flux is in phase with the interface, and thus is positive (and maximum) at
x=0 and negative at x = 1/2, corresponding to a positive net influx of the surfactant
into the control part of the interface), which gives the sums of the inflows through
the two boundaries to be 2Iyshét. The surfactant wave is I' = G; cos(ax + m/2) =
—Gj sin ax, where, in view of (5.14),

h4F0(M2 — [1)S

G, =
! aMaoyd,

(5.15)
is real. We see that the surfactant concentration reaches its minimum value at the
middle point of the interval 0 < x < A4/2 for m > 1, since then the phase shift of
the surfactant (from the interface) is 90°; but reaches its maximum value for m < 1
since then the phase shift of the surfactant is —90°. Together with the aforementioned
positive net influx of surfactant through the interval end points, this yields stability
for m > 1 and instability for m < 1. Quantitatively, the integral form of the mass
conservation law for the surfactant implies

/2
2Iosh(8f) = / —G(e® — 1) (sin ax) dx, = —

0

23X (60Gy (5.16)

(Note that this equation is equivalent to using the differential surfactant equation
(3.28), which is the second step in the ‘shuttling” method.) Substituting the expression
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(5.15) for G,, we arrive at the growth rate

O'()dz
4y (m — 1)’

in agreement with the large n limit of (4.5). Clearly, this formula shows stability for
m > 1, which corresponds to the phase shift 6= 7/2 (see (5.14)), and instability for
m < 1, corresponding to = —m/2.

This growth/decay mechanism is summarized as follows. The leading-order flow in
the thick layer is the same as that for the robust branch, but vanishes in the thin layer
because of the cancellation of the tangential stress of the thick layer by the Marangoni
stress. This cancellation requires that the surfactant phase shift with respect to the
interface is 90° for m > 1 and —90° for m < 1; whereas the surfactant flux (the product
of the base concentration and the base velocity at the disturbed interface) is always in
phase with the interface. Hence, the surfactant flux is out of phase with the surfactant
wave, 90° for m > 1 and —90° for m < 1. Thus, considering the surfactant for 0 <x <
A/2, the net influx through the end points is always positive. For m > 1, the surfactant
concentration is a minimum at the midpoint, and the positive influx implies stability.
For m < 1, the surfactant concentration is a maximum at the midpoint, and the positive
influx implies instability.

(If the assumed cancellation of the tangential stresses is relaxed, the two stresses
in question are still of the same order, and this implies that # ~ i¢G. Since u; ~ h,
we get w(0) ~iah, and then (3.29) yields y ~ia. Hence, in the surfactant equation,
the left-hand side term is yG ~ oG, while no term on the right-hand side is of a
lower order than iwh ~ «®G. Thus, the leading-order term y G cannot be balanced. This
contradiction can be resolved only by returning to the cancellation of the tangential
stresses.)

As a consistency check, this growth rate, as well as the wave velocity for this
branch, can be also recovered in the manner that was used for the other branch, by
considering the volume balance of the bottom liquid film over the intervals of length
Tt /o, starting at x = /2o and x =0, correspondingly. These calculations are found in
Frenkel & Halpern (2016).

Y =—a*Ma (5.17)

5.3. Comparison of the two modes and intermediate asymptotics for large aspect
ratio

In general, we may start the analysis for either mode with the disturbance flow in
the thick layer. Remarkably, it is decoupled from the thin layer and is completely
determined by the base flow and the condition of zero net flow in the thick layer.
Returning to dimensionless quantities, this flow is

=" (1—5) (1—3%). (5.18)

m n

It exerts a viscous tangential stress 7, = —4(m — 1)sh/n on the thin layer at the
interface. There is an additional tangential stress due to the Marangoni effect of the
surfactant, which is tyy = —MaiaG. The flow in the thin layer has a linear velocity
profile driven by the sum of these two interfacial tangential stresses, 7| = 1, + Ty,

__4(m — D)sh

up = (z+ 1) — MaiaG(z+ 1), (5.19)
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where the first term is ultimately due to the base flow (via interfacial friction), and the
second one to the surfactant. Using the continuity equation (3.3), we find the vertical

velocity
2(m — 1)sicth !
wi(2) = w(w = SMae*Glz + 1) (5.20)

We use the interfacial value of this velocity component to write the kinematic
boundary condition (2.10) in the form

2s(m—1)
B n

) Ma ,
yh 1ozh+7a G=0 (5.21)
(cf. (3.27)). The second term here originates from the base flow and the third one is
due to the surfactant. The surfactant transport equation (2.9) takes the form

¥G + iash + Maa’G =0 (5.22)

(cf. (3.28)). Note that the term coming from the non-surfactant part of the disturbance
velocity, 4(m — 1)shia/n, has been neglected by comparison with the second term of
(5.22).

There are three possibilities regarding the relative size of the Marangoni term
(containing MaG and corresponding to the Marangoni tangential stress at the interface)
and the base flow term (containing sk and corresponding to the interfacial tangential
stress induced by the base flow) of the kinematic equation (5.21): (i) the Marangoni
term is much smaller than the base flow term; (ii) both terms are of the same order;
and (iii) the Marangoni term is much larger than the base flow term. We consider
them in turn.

In the first case, when the Marangoni term is negligible, the kinematic equation
gives y = 2ias(m — 1)/n to the leading order. Also, in this leading-order flow G =
—n/(2(m — 1))k from the surfactant equation (cf. (5.8)). The surfactant-driven flow is
a correction to this leading order, with the correction to increment y, satisfying the
correction to the kinematic equation

M M
yoh=—22g2G= 42 (5.23)
2 4m—1)
So the growth rate is
Man
Y= ——0a", (5.24)
4(m—1)

which is the dimensionless form of the result (5.12), the robust branch.

Assuming now the second case, the last two terms of the kinematic equation being
of the same order h/n ~ aG, it is clear that the Marangoni term in the transport
equation is negligible. At a fixed n, a solution can be found if the first term in the
kinematic equation (5.21) is negligible. Then we have

aMan

h=-G——,
4ds(m — 1)

(5.25)

which agrees with the large n limit of the leading order in (4.8). With this, the
transport equation (5.22) yields

a*Man

y:
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which is the dimensionless form of the previous result (5.17), the surfactant mode.
Thus the two normal modes are characterized in terms of the relative strengths of the
two tangential stresses at the interface.

Turning now to the last case, when the term with Ma dominates the term with s in
the kinematic equation, we must have ah/n < o?’G and hence h < anG < G (since
an <K 1), and the transport and kinematic equations simplify to

yG = —iash (5.27)

and
yh=—a’MaG)/2, (5.28)

respectively. From these two equations, we obtain y? =ia*Mas/2, so
y =+ +i)Ma'*s"?a’? 2. (5.29)
Thus, the growth rates for the two modes are
X =+Ma'*s"?a’?)2, (5.30)

so one of the modes is stable and the other one unstable. Writing the fact that the
second term in the kinematic equation is negligible in comparison with the third term,
h « anG, and taking into account that, from the simplified transport equation with
y ~a*?, we have G~ a~'/?h, it follows that 1 < «!/>n. Together with an < 1, this
means that the modes (5.30) exist in the interval

1 1
S <a -, (5.31)
n n

which is bounded away from zero. Thus, this case is generic, but the asymptotics
(5.30) is merely intermediate since it does not persist in the limit « | 0. One should
note that the condition of validity for « is more accurately given by

1
oc<<;<<ocl/2. (5.32)

5.4. Cases of the finite aspect ratio with possible gravity effects

Turning next to the less simple situation of the layer thicknesses being comparable,
allowing for gravity effects, the flows in the two layers are fully coupled. Both
governing equations, the kinematic equation (3.27) and the transport equation (3.28),
have three different terms in their right-hand sides: one term due to the base shear
(containing sh), one due to the surfactant (containing MaG), and one due to gravity
(containing Boh). The two modes found previously still have the following physical
characterization, similar to the simpler case of large aspect ratio and no gravity: the
robust mode has the gravity and surfactant effects absent at the leading order in ic,
so that only the first right-hand side term is retained in both governing equations.
The simplified kinematic equation at once yields the leading-order increment (see
4.2)

2ic(m — Dn*(n+ 1)s

" :

(5.33)
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(and thus the wave velocity ¢ = 2(m — 1)(n + 1)n’s/y). Therefore, the simplified
surfactant transport equation determines

——p
G=—h (5.34)

(Note that this G is real and hence the surfactant is either in phase (for m < 1) or in
anti-phase (for m > 1) with the interface.) Thus, the leading order yields just the wave
velocity found in Yih (1967) (and, for large n, reproduces the previously obtained
expression (5.4)). The growth rate due to surfactant and gravity effects appears in
the correction to the leading-order disturbance flow. Substituting the leading order G
(5.34) into the kinematic equation (3.27) with the left-hand side y.h, where y. is the
correction to the increment, and the first term on the right-hand side absent in the
correction equation, we reproduce the growth rate (4.3) of the robust mode.

The surfactant mode hinges on the Marangoni effect, the leading-order flow being
determined, just like in the previous case of large n, by the dominant balance of only
the base shear and surfactant terms in the kinematic equation. This reproduces the
leading order of the result (4.8) for the relation between G and A, which we write
now in the form

(n* — m)Max

=—i (5.35)
4n+ 1)(m— 1)s

(Hence, the surfactant shift from the interface is —90° in the S (m < 1) and Q (m > n?)
sectors and 90° in the R (1 < m < n?) sector.) Substituting this into the surfactant
transport equation (3.28), the gravity term is of a higher order in o, and hence the
growth rate is found to be independent of Bo, reproducing equation (4.5).

One way to find the velocity profile u,(z) for the surfactant branch is to apply the
same procedure as was used in § 5.2 for the case of large n and no gravity. Namely,
we use expression (3.2) for normal modes along with the linearized pressure gradient
(3.14) and the interfacial vorticity (3.15) to obtain the velocity amplitude in terms of
G and h, and then substitute G in terms of /4 from (4.8). The result is

u (z) = _lesh(z-l—l)@z-i-l)
m-—n
- {(n_ DM o+ 1) = 1)+ G+ 3+ 1)+ D]
m—n 2(m — Dn
2
-T2 G+ 1)}- (530

(All the other velocities, for both branches and both layers, can be found similarly,
and are listed in appendix A.) As was noted in CH, any flow of this type, with a
complex-valued horizontal velocity amplitude as in (5.36), can be considered as a
superposition of two flows, one of which is in phase or anti-phase with the interface
and the other is £90° out of phase with the interface. The in-phase (or anti-phase)
and out-of-phase flows correspond, respectively, to the real and purely imaginary
addends in the amplitude of the horizontal velocity. The real part of this velocity
component generates the imaginary part of the vertical velocity, whose interfacial
value divided by 7/ equals therimaginary part of the increment, which determines the
wave velocity; while the imaginary part generates the real part of the vertical velocity,
whose interfacial value divided by £ is the growth rate. Thus, the stability/instability
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is due solely to the out-of-phase flow. (From the alternative point of view based
on the integral form of the mass conservation law, this is so because the fluid flux
wave is £90° out of phase with the thickness wave.) Note that, in difference with
the robust branch, whose in-phase flow is due to the base shear only, the in-phase
flow of (5.36), a surfactant mode, has a contribution from the surfactant. This is due
to the fact that, for the surfactant branch, to the leading order a~!, the surfactant
amplitude G is purely imaginary, i.e. 290° out of phase with A, and so expressing G
in terms of /& converts the surfactant terms in the pressure, vorticity, velocity and the
kinematic equations into the form of the base shear terms there. The wave velocity,

which corresponds to the real part of (5.36), vanishes since ffl(z—i- 1)(3z+1)dz=0.
(For the same reason, there is no term proportional to Bo in the growth rate (4.5)
determined by the out-of-phase flow, by integrating the imaginary part of u; (5.36).)
Also, this integral being zero is interpreted as the annihilation of the flux of the
in-phase flow.

From these considerations, it transpires that the robust modes can be regarded
as a modification of the (single) mode of Charru & Hinch (2000), in which the
leading-order flow is the same in-phase, non-dissipative Yih wave, but the next-order,
out-of-phase, dissipative correction is determined, instead of inertia, by the Marangoni
tangential stress and/or the pressure difference generated by the gravitational normal
stress. Thus, the robust mode corresponds to the Marangoni tangential stress being of
higher order than that of the tangential viscous stresses of the liquid layers (whose
thicknesses are comparable) at their interface. The robust branch is also characterized
by the leading-order surfactant concentration being either in phase or totally, 180°
out of phase with the interface, while for the surfactant branch the leading-order
surfactant concentration is +90° out of phase with the interface. The surfactant mode
can be recovered, in this more physical way, by starting with the only other possible
assumption about the Marangoni tangential stress: that the latter is of the same order
as the viscous stresses of the liquid layers, and thus participates in the leading-order
interfacial balance of the tangential stresses (and not only in the correction order of
the tangential stress condition, as in the robust mode).

In more detail, in this alternative way of finding the complete normal modes
[u;(2), wj(2), pj, h, Gle“*™"", the corresponding algebra-differential eigenvalue problem
is given by the normal-form version of (3.1), (3.3), (3.5), (3.7), (3.10), (3.11),
the kinematic equation yh = w(0) (obtained by the linearization of (5.21) and the
amplitude form of the linearized surfactant evolution equation (2.9) (with the diffusion
term discarded):

yG = —ia(sh + u(0)). (5.37)

There are also the zero conditions for the both velocity components at the plates. The
solutions of the eigenvalue problems corresponding to the two branches of normal
modes are obtained using the appropriate assumptions about the tangential stresses and
the flow fluxes in the two layers (as was mentioned above).

We deal with the surfactant branch first. From the momentum equations, we know
that the horizontal velocities are quadratic functions of z that can be written, without
loss of generality, in the form satisfying the no-slip wall conditions, as

u=0zZ+D[AGz—1)+A)] and wu, = (z—n)[B,(z+n) + Byl, (5.38a,b)

(cf. (3.2). The same considerations hold for the robust branch, and below we will use
for this velocity the same form with four undetermined coefficients.) Integrating the
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incompressibility equation yields the vertical velocities given by (A 19):

wi(2) = —ia / u(§)dé and wy(z) = —ix /& u (&) d€. (5.39a,b)
-1 n

For the surfactant branch, as discussed above, the Marangoni stresses act already in
the leading order, and in such a way that, to the leading order (but not necessarily for
the correction, as will be seen later), the fluxes vanish through each layer separately.
This is equivalent to requiring w;(0) =w,(0) =0 (which, from the kinematic condition,
implies that the leading-order ! increment is zero). Integrating (5.39) with the upper
limit z=0 yields the following two relations for the coefficients:

—2A14+14,=0 and 32n’B,+in"By=0. (5.40a,b)

This allows eliminating two of the constants and thus writing each velocity with just
one undetermined coefficient: u; = A(z + 1)(3z + 1)sh and u, = B(z — n)(3z — n)sh,
(where the factor sh has been introduced for future convenience). The pressures are
equal since the gravity effects are of a higher order; this requires mB = A. Hence,
we eliminate A from the interfacial condition for the horizontal velocities, at z = 0:
n*Bsh — mBsh = sh(m — 1)/m. This implies the solution

(m—1) (m—1)
=—— " A=-—" (5.41a,b)
m(n? —m) (n* —m)

With this, we obtain exactly the leading-order velocities (A1) and (A 3). Next, the
tangential stress condition (3.7), written in the amplitude form, gives a relation
between h and G, 4sh(n + 1)(m — 1)/(m — n?) = iaMaG (thus reproducing the
leading-order of (4.8)), which we use in the following amplitude form of the linearized
surfactant evolution equation (2.9) (with the diffusion term discarded):

y G = —ia(sh 4 u;(0)), (5.42)

where u;(0) = —sh(m — 1)/(m — n?). Substituting the latter into the surfactant
equation (5.42), followed by expressing 4 in terms G from the tangential stress
condition, yields, after cancelling out G, exactly the explicit expression (4.5) for the
leading-order increment y (which is real and thus the leading-order non-zero growth
rate for the surfactant mode).

The (purely imaginary, out of phase with h) corrections to these leading-order
disturbances of the horizontal velocities are written in the same quadratic form
(5.38), but with the four coefficients having the superscript ‘c’ and, for anticipated
convenience, a factor iwh. However, in contrast to the leading order, each correction
flux is not required to be zero; instead, the kinematic condition in order «” requires
wi(0) =y = w5(0) where y is the leading-order growth rate given by (4.5). This
yields the following two relations for the coefficients:

Zpc g lpe o = DMa (5.43)
372 Am—1) '

and 1 DM
B+ —n’BS = —u.
4(m—1)

5 (5.44)
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We use the latter equation to express Bj in terms of B{ and Ma. From the normal
stress condition, we obtain Af in terms of B{ and Bo. Then, using the continuity of the
horizontal velocities at z=0, Af is obtained in terms of B{, Bo and Ma. Substituting
the latter expressions into (5.43) yields an equation for B, whose solution is

1 < 32— 1) >
B M —Bo) . (5.45)

= a
2(m — n?) (m—Dn

Using this, all the other coefficients are written in terms of the system parameters,
which reproduces the imaginary parts of the horizontal velocity eigenfunctions,
equations (A2) and (A4) of appendix A. The tangential stress condition (3.7), in
this order, leads to the relation iwh(mBj — Aj) =iaMaG*, from which we obtain the
G°/h in terms of the parameters. It is exactly the second term of (4.8). Finally, the
surfactant equation of the order a® is used to obtain the increment correction term.
The latter is purely imaginary, of the form ic®J/;, where the J; is found in terms of
the parameters to be the same as given by (4.6) (which leads to the leading non-zero
term of the wave velocity proportional to «?). Thus, we have determined completely
the eigenfunctions and eigenvalues of the surfactant branch.

We turn now to the robust branch. The leading-order disturbances u; take the same
form as (5.38) but with a relabelling of the coefficients: C in place of A, and D instead
of B. The relation following from the continuity of vertical velocities is

—2C1 + 3Cy=3n"Dy + in’Dy. (5.46)

Since the pressures are equal, C; = mD;. The Marangoni term is absent in the
tangential stress condition, so that mDu, — Du; = 0; hence, Cy = mD,. Then the
horizontal velocity condition (3.10) yields

sh(m —1)
—

n*D, +nDy — m(D, — Dy) = — 5.47)

Also, equation (5.46) becomes a relation between D, and D, only, which can be
written as

3 2
= M (5.48)
4(m+n?)
Substituting this into (5.47) yields the following expression for Dy,
4(m—1 3
py= _Hm=Dmtm) g, (5.49)

myr

Using this, the other coefficients can be written in terms of the system parameters,
and we thus obtain the leading-order horizontal velocities (AS5) and (A7) given
(as the real parts) in appendix A. (From the above derivation, it is clear that these
horizontal velocities must coincide with those obtained by Yih (1967) and given as
the leading-order eigenfunctions in Charru & Hinch (2000), and with those obtained
by Yiantsios & Higgins (1988) for the two-layer Poiseuille base flow when written
in terms of the base shear parameter.) The kinematic condition yh = w;(0) yields
the purely imaginary leading=order-increment (5.33). Using the expressions in terms
of the system parameters for y and u,(0) in the surfactant equation (5.42) yields
the robust branch relation for| G given by the leading order of (4.7), which will be
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used to find the corrections to the horizontal velocities. Namely, the tangential stress
condition of the order o', which now includes the Marangoni term iaMaG, yields

. ahMag
Co=mDy+i——. 5.50
0o =MD T e (5-50)
The normal stress condition yields
hB
c;=mD§+i°‘20. (5.51)

We use these relations to eliminate Cj and Cy in the continuity conditions for the
vertical and horizontal velocity corrections of the order ! given correspondingly by
(5.46) (in which all the unknowns should be endowed with the superscript ‘c’) and
the equation (cf. (5.47))

n*DS + nDj; — (CS — C5) =0. (5.52)

Solving this system of two equations for the unknowns Dj and D leads to the
expressions for the (higher-order correction) imaginary parts of horizontal velocities
for the robust branch given in appendix A. Finally, using the order o kinematic
condition y°h = w{(0) yields the growth rate (4.3). The correction to the leading
order G/h can be found from the surfactant equation taken in the order o?.

Returning to the surfactant branch, note that the requirement we have used, that
each vertical velocity is zero at the interface, can be relaxed. If we just impose
equality of these velocities, along with requiring that the surfactant Marangoni term
is not negligible in the leading-order tangential stress condition, then it turns out that
these velocities must automatically vanish. Thus, the surfactant mode is recovered
from the sole assumption that the surfactant Marangoni tangential stress is present
in the leading-order balance, while the robust mode is characterized, to the contrary,
by the Marangoni tangential stress being neglected in the leading order and first
appearing in the next-order correction.

Finally, for s # 0, consider the special case of m =1, the R — S boundary. (Note
that then ¥ = (n+ 1)* and ¢ = (n+ 1)*.) The leading-order disturbances u; are given
in standard form by (5.38), but with the coefficients labelled, say, F; and G; instead
of A, and B, respectively. These four coefficients are determined from the velocity
and stress conditions at the interface. The horizontal velocity relation is homogeneous
since the right-hand side (see (5.47)) vanishes for m = 1. To have non-trivial results,
the Marangoni forcing term must be present in the tangential stress relation. As a
result,

U = —iaMaG(n_filP(z—i- DBGE—=1D+ @ —n+4)] (5.53)
and
U, = ionaG(niW(z —n)[-3n(z+n) + @n* —n+ D]. (5.54)

Hence we find w;(0), and thus the kinematic condition in the leading order yields

2
. 5 n“(n—1)
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The surfactant conservation equation is found in the leading order ! to be

y G = —iash. (5.56)
Multiplying these two equations,
2
s .3 n“(n—1)
= Ma———, 5.57
y-=ia’s a2(n 1) ( )
while dividing them yields
G\’ 1)}
G) Zgjgr St D" (5.58)
h Man*(n—1)

We see that there are two solutions with y oc @®? and G oc o~'/2. Thus, the leading
order of the kinematic condition (5.55) is a*2. It is clear that for the growing mode
with Arg(y) = /4 we have Arg(G) = —3n/4 and for the decaying mode, with
Argy = —37n/4, we have Arg(G) = /4. We can rewrite the velocities in terms of &
(see (A9) and (A 10) in appendix A). The effect of gravity comes in the next-order
correction. The normal stress relation is G{ — F{ = —iaBoh/2 and the tangential
stress relation is Gj — F§j = iaMaG* (where the superscript indicates a correction).
Correspondingly, we find the coefficients, and thus the velocity corrections, in terms
of h and the surfactant correction G¢. Then, the kinematic condition of order «?
yields
c 2 I’l3 2 Cl’lz(l’l — 1)
y‘h=—a"Boh——— — a"MaG* ——, (5.59)
3(n+1)3 2(n+1)3
and the surfactant equation of order o*/? is y°G + yG¢ = 0. It follows that

3
b n

and
G¢ Bon
h 3Man—1)
With this, the velocity corrections are written in terms of A, and are given in
appendix A. We note that the requirement that the gravity term is negligible in the
kinematic condition is satisfied when

(5.61)

al/2B0s1/2

Ma'*(n+ 1)2(n — 1)

<1, (5.62)

which is the case, e.g. even if Bo>> 1, but at the same time n is sufficiently large.

Clearly when in addition to m = 1, also n =1, equation (5.57) does not yield a
non-zero leading-order result. We can obtain the leading-order growth rates by using
the quadratic equation (3.31) and specifying m =n =1 in the coefficients ¢; and cy.
Then it is straightforward to obtain from the solution (3.34) that yz = —Boa?/24 for
the robust branch and yz = —Maa?/8 for the surfactant branch.

Theconsideration for the special case s = 0, which implies that both the base
flow and the leading-order disturbance | flow are absent, proceeds in the same manner
as before, starting with the same quadratic ansatz (5.38) for the correction-order
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horizontal velocity (which in this case is actually the leading non-zero-order flow),
but has certain differences between the cases of Bo=0 and Bo #0. In all these cases,
whether Bo=0 or Bo #0, the surfactant mode or the robust one, the four coefficients
of the two horizontal velocity expressions for the fluid layers are found in terms of
G and h by solving the system of four linear non-homogeneous equations, which
consists of the two interfacial velocity conditions, the normal stress condition and the
tangential stress condition. Substituting these velocity expressions into the kinematic
equation (3.29) and the surfactant equation (5.37), which simplifies to y G = —iou;(0),
we obtain the same two equations for the eigenvalue y and eigenfunction G/h as
in §4.1, whose solution reproduces the eigenvalues and G/h found there. Then the
velocities are written in term of & only as G is eliminated from their expressions
by using the appropriate ratios G/h. These expressions for the velocities in terms
of h are given in appendix A. (We note that the special cases m =1, s # 0 and
s =0, Bo # 0 are more complicated than the other cases in that we arrive at a
quadratic equation for y (or for G/h) rather than a linear one. For the former case,
it is the incomplete quadratic equation (5.57) for the leading-order y (while the
equation for the correction of the increment y¢ is linear again). For the case s =0,
Bo # 0, the equation for y (which coincides with y) is a full quadratic equation.
The equations for the four undetermined coefficients of u; are the same as those for
the velocity corrections of the robust branch with s # 0, equations (5.50)—(5.52) and
(5.46), and therefore the corresponding velocity expressions written in terms of G
and h are the same. However, they differ when written in terms of & only, because
the corresponding eigenfunctions G/h are different.)

It is worth noting that in the conditions of the flows considered by Charru & Hinch
(2000), which included the effects of inertia but assumed constant surface tension, the
advection of the leading, in-phase, vorticity by the base flow (clearly, an inertial term),
acts as a source for the out-of-phase corrections to the vorticity and the horizontal
velocity, and therefore to the in-phase vertical velocity, whose interfacial value is
identical to the growth rate. Thus, the leading-order vorticity is solely responsible for
the dissipative effects of the growth or damping of the infinitesimal disturbances. In
contrast, for our (and W) case of inertialess flow, but with surfactants and/or gravity,
it is clear that vorticity plays no such dynamical role at all. Instead, the out-of-phase
horizontal velocities (solely responsible for resolving the stability/instability question)
are produced by the Marangoni forces due to the interfacial surfactant and/or gravity.
Although it is possible to formulate the criterion of stability/instability in terms of
the intervals for the phase (i.e. argument) of the complex-valued interfacial vertical
velocity, it is clearly more natural, and simpler, to use for this purpose the real part
of w;(0) since (see (3.29)) the latter divided by £ is identically equal to the growth
rate. This vertical velocity is closely related to the out-of-phase horizontal velocity; as
was mentioned before, the spanwise integral of the horizontal velocity is proportional
to the interfacial value of the vertical velocity.

6. Nonlinear stages of instability

6.1. Small-amplitude saturation in the R and Q sectors with linearly unstable robust
modes

Regimes in which the amplitudes of the deviations of the interface thickness and
thesurfactant concentration remain small are described by the weakly nonlinear
equations (3.22) and (3.23). As was mentioned above, by changing x to a new variable
x — x + Vt where V is the coefficient of 7, in (3.22), we eliminate the 7, in that
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equation. However, performing this change of variable, an additional term —VI
appears in the surfactant equation (6.2) below:

n*(m+ n)Bo N n*(m+ n) n*(n* — m)Ma

N x 7 55 T xxxx T
N+ sNinn n 3y n 2

3 I',=0 (6.1)

and

_ 2 3
i 2(m— Dn*(n+ l)st B n(m —I—Wn YMa o (n +1/f1)¢s77x

14
2(.,2 20,2
_mr—mBo,  nmmm, 62)
2y 2y
Note that the transport equation is now linear to this leading order; we have neglected
the nonlinear term sN,7n7n, by comparison with the retained term proportional to 7,.
Some examples of such weakly nonlinear regimes follow.

If m = n® (the border between the R and Q sectors), the surfactant term in the
kinematic equation vanishes, so it decouples (also, in the transport equation, two terms
vanish). Note that ¢ =4n*(n+ 1), ¥ =4n’(n+ 1)*> and N, = 1/n. If, in addition, n is
large (note that then ¢ ~ 4n® and  ~ 4n°), the weakly nonlinear system (6.1)—(6.2)
simplifies to

42 B et =0 6.3)
77: n’?ﬂx lznxx lznxxxx— .
and
) Ma s
ILi+-I,——1I>+—-n.=0. (6.4)
2 4n n

The first equation here is a KS equation for n (provided the Bond number is negative).
It gives a saturated chaotic state with the characteristic length scale, say, L, the time
scale T, and the amplitude of undulations N, which can be estimated (in terms of the
Bond number, the thickness ratio and the shear parameter) from the pairwise balance
of the four terms as L ~ (—Bo)~'?, N ~ n/(12L3s) and T ~ 12L*. (For example,
choosing Bo = —10"2, n =100, and s =1, we get L~ 10, N~ 1072, T ~ 10°.) The
transport equation has the form of a diffusion equation for the surfactant, with the
n, term acting as a source. The ratio of the third to the second terms of (6.4) is
of order Ma/(snL) and since n and L are large, assuming Ma/s = O(1) or less, the
second-derivative term in (6.4) is neglected. Thus (6.4) simplifies to the form

s s
I+ -I=—-n,, (6.5)
2 n

(where s =1 for this example). Note that the dominant balance is between the two
terms with the first order x derivatives. Hence we see that

2
'~ ——y. (6.6)
n
This means that I" and 5 are in anti-phase. The right-hand side of (6.5) is a known

function, a solution of the Kuramoto—Sivashinsky equation (6.1). It is well known and
also it can be easily checked that the solution of the equation of the form

uy +au, =f(t, x), (6.7)
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with the initial condition u(0, x) = ug(x) is
t
u(t, x)=u0(x—at)—i—/f(t,x—at—i—ar)dt, (6.8)
0

where, in our case u(t,x)=1'(t,x), a=s/2 and f(¢, x) = —s/nn.(t, x). We change the
variable T to y where y=x—at+at so that t(y) = ">+ Then

ne(t, %) =, (y;x +1, y) , 6.9)

where the partial derivative is with the first variable being fixed at the value
y—x/a+t. As a result, the integral in (6.8) takes the form

<o (y— d
_5/ on (Y X y) Y. (6.10)
nJx—at ay a a

Note that the partial derivative under the integral is related — and briefly will be seen
to be approximately equal — to the ordinary derivative as

/L PR
— = — (7 R J—
dy Ot Y ydy

an
;(r,y). (6.11)
y

Here, the partial derivatives of the Kuramoto—Sivashinsky solution have the following
estimates:
an N an N N

~ —

9y L ot T 120*

So the first term in (6.11) can be neglected. Thus the integral in question is
approximately

(6.12a,b)

*d d
—S/ d—”(r(yxy)—y:—i(n(z, ) — (0, x — ar)). 6.13)
x—at y a an

Therefore the solution is
2 2
re,x)=——nt,x)+ (0, x—at)——n0,x—at) ). (6.14)
n n

Hence, when the initial conditions can be neglected as compared to the saturated
solutions, we return to (6.6).

With no constraints on m and n (so that m is not necessarily equal to n*> and n
is not necessarily large), we solved the strongly nonlinear system of equations, (3.20)
and (3.21) (except for the figure 6(a) obtained with the weakly nonlinear equations),
numerically on the interval —A/2 <x < A/2 with periodic boundary conditions using
the method of lines, where the spatial derivatives were approximated using fourth-
order finite differences. A variable time stepping scheme was used from the software
package SUNDIALS (Hindmarsh ef al. 2005). The length of the computation domain,
A, was chosen to be large enough so that the choice of initial conditions did not
significantly influence the large=time solutions of the system of equations.

Figure 6(a) shows the time evolution of 7, = mMax_,n<ecapn(n(f, x)) and
501 = 50 max_ap< < a2(L7(2, X)) for the following set of parameters: A = 200,
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FIGURE 6. (Colour online) (a) Time dependence of the maximum values of n and I" over
the spatial domain —A/2 <x < A/2, with m=n*>=100%, s=1, Ma=1, Bo=—0.01 and
A =2007, obtained by solving the coupled equations (6.3) and (6.4) for 0 <t < 10%. The
factor —50 multiplying the surfactant concentration I” corresponds to (6.6). The (linear
scales) inset zooms in on 7, for a later part of the numerical run, 8 x 107 <t < 108, (b)
Snapshot of small-amplitude spatial profiles typical of the ultimate, post-saturation stage of
evolution. It shows n and scaled I' at t=2 x 10% for the evolution pertaining to panel (a).

m = n> = 100>, s = 1 and Bo = —0.01. It bears out that eventually there is
small-amplitude saturation of the instability and that in this ultimate regime the
solution to (6.3) and (6.4) satisfies the proportionality property, equation (6.6).
Figure 6(b) also shows that the large-time prediction, equation (6.6), is corroborated,
this time for the spatial profiles obtained in the numerical simulation of the strongly
nonlinear equations. (This also provides an additional testimony to the veracity of the
weakly nonlinear numerical solutions.) The inset in panel (a) of this figure zooms
in on a part of the ultimate evolution of 7,,, resolving its fluctuations and revealing
their characteristic time scale.

Such small-amplitude saturation solutions are found even with zero Bond number
in the R sector. The Bond number terms disappear from (6.1) and (6.2). In the latter,
if the Marangoni number is of order one or less, for the long waves, the term with
the second derivative of I" is much smaller than the term with the first derivative of
I', and the dominant balance is between the I, and the 7, terms in equation (6.2)
provided that the time scale is sufficiently large. This, similar to (6.6), implies the
relation

¢

2Wwm—1)"

In the R and Q sectors this clearly implies that I" and 5 are in anti-phase. (Note that
the same relation is found for the normal modes of the linear theory given by (3.30).
Also, in the limit of m =n? and n — oo we recover the relation (6.6).) Substituting
(6.15) into the kinematic equation (6.1) we obtain the Kuramoto—Sivashinsky equation

~

(6.15)

n*(m+n n* — m)Ma

¥nmx + unm + sNynn, =0. (6.16)
3y 4y (m—1)

The characteristic scales (assuming that all other parameters except for Ma are of
order one including m — 1) become L~ Ma~"/?, N~Ma/L~Ma*? and T ~ L*~Ma™>.
Hence for Ma <1, the length! scale is large, the time scale is even much larger, the

N:
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FIGURE 7. (Colour online) (a) The maximum values of n and I as functions of time in
the R sector. Here n=m =2, s=1, Ma=0.01, Bo=0 and A =100w. The (linear scales)
inset zooms in on 7, for a later part of the run, 9 x 107 <t < 10%. (b) Spatial profiles
of n and I' at the end time, = 108, of the evolution pertaining to panel (a).

amplitudes are small, and the previously assumed dominant balance in the surfactant
equation is justified. With these scales, neglecting the term with Bo in (6.1) in
comparison with the fourth-derivative term is consistent if Bo < L2, that is Bo < Ma.
(Neglecting the term with Bo in (6.2) as compared to the term with 5, leads to
a weaker requirement, |Bo| < (n + 1)¢sL/(n*(m — n?)).) By considerations similar
to those which led to (6.14), we obtain a correction to (6.15) due to the initial
conditions,

9 —ay-
I x) = 2n2(m—1)n(t’x)+(F(0’x at) 2n2(m — 1)

where a = 2(m — 1)n*(n+ 1)s/v. For example, for m = n = 2, the relation (6.14)
gives I’ = —%n for the large-time, permanent, saturated state. Thus we have two
chaotic functions, n and I", which differ by just a constant factor. As an illustration, a
numerical simulation (of the strongly nonlinear system) yields the time dependencies
of Ny and I, figure 7(a), which show the saturation of instability, and the spatial
profiles, figure 7(b), which are all in excellent agreement with the predictions. The
present result of small-amplitude saturation is in marked contrast with our earlier
findings (see Frenkel & Halpern 2006) that for the semi-infinite system, also with no
gravity, no small-amplitude saturation is possible (which was also confirmed in the
numerical simulations of Bassom et al. 2010; Kalogirou & Papageorgiou 2016).

The above results have been obtained for the R sector where the robust mode is
unstable and the surfactant one is stable. To the contrary, in the S sector, where the
surfactant mode is unstable and the robust mode is stable for zero Bond number, there
appears to be no small-amplitude saturation. Moreover, as is discussed in the next
section, even the long-wave assumption may get violated after some time so that no
long-wave solutions exist at large time.

In the Q sector, for finite m and n, small negative Bo, and assuming that Ma is
so small that the terms containing it can be discarded, we obtain again the decoupled
Kuramoto—Sivashinsky equation, leading to L~ (—Bo)~"?, N~n*(m+n)/(3¥L%s) and
T3yl a3y () Wercannseenthat the relation (6.15) holds here as well as in the
R sector. Such solutions belonging to the Q sector are illustrated in figure 8. Note that
I’ =~ —55/327, exactly as (6.15) predicts for n=2 and m =>5.

n(0, x — at)) ,  (6.17)



Nonlinear surfactant and gravity dependent instability of two-layer flows 195

(@) (b) (x107%)
4

(x 107%) — Nmax —1
2.1 ‘ = Dpax - - =32r/55

1073

1074

210 ~05 0 05 1.0
t 2x/ A

FIGURE 8. (Colour online) (@) Time dependence of the maximum values of n and I’
in the Q sector. The parameter values are n=2, m=15, s=1, Ma=0.001, Bo= —0.01
and A =2007w. The (linear scales) inset zooms in on n,, for a later part of the run,
8 x 107 <t < 10%. (b) Spatial profiles of n and I' at the end time, =103, of the evolution
pertaining to (a).

As we know in the § sector the robust modes are unstable provided that the Bond
number is negative and below the threshold given by (4.14). They still saturate with
small amplitude like in the R and Q sectors. The difference is that I and 5 are
in phase as opposed to anti-phase. For example, in the cases where the Marangoni
number is essentially zero, we have the Kuramoto—Sivashinsky equation (6.1) with a
destabilizing gravity term. This leads to small-amplitude saturation of the Rayleigh—
Taylor instability. Similar saturation was found e.g. in Babchin et al. (1983) but for
n = oo. (Note, however, that the saturation of the Rayleigh—Taylor instability in the
finite channels has not been demonstrated before the present study.) The surfactant in
this case plays no dynamical role, and is just advected passively by the flow.

6.2. Nonlinear saturation in the S sector with linearly unstable surfactant modes

In the previous subsection we established that unstable robust modes saturate with the
amplitudes of both n and I" being small. To the contrary, in the S sector, there appears
to be no small-amplitude saturation of the linearly unstable surfactant mode. (Recall
that the surfactant modes are linearly stable in the R and Q sectors.) However, it is
possible that the saturated n amplitude is still small while the saturated I" is not small.
For such regimes, as was noted above, the linear transport equation (6.2) acquires a
nonlinear term and thus takes the form

r+ 80P g gy, g 2 D D nn MGy,
v v v
n®(n* — m)Bo n?(n* —m) _
- 2&// Nxx + 210 Nxxxx = 0 (618)

Note that a nonlinear term containing Marangoni number has been included, as it may
be comparable with the s term, since the extra differentiation in the former can be
balanced by the smallness of 7 in the latter.

Moreover, even the long-wave assumption may get violated after some time so that
no long-wave solutions exist at large time. As an example, the run corresponding to
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FIGURE 9. (Colour online) (@) The maximum values of n and I" as functions of time
in the S sector, with n=2, m=1/2, s=1, Ma=10"%, Bo=0 and A =20m. (b) n and
(c) I" profiles near the moment when small-scale disturbances appear if large scale but
small-amplitude initial conditions are used. Note that only the right half of the spatial
domain is shown, where the small scales first appear.

figure 9(a) starts with a very long-wave sinusoidal initial condition, but later, as shown
in figure 9(b), a short-wave disturbance appears on a limited part of the profiles. As
time goes on, the amplitude and the extent of the disturbance grow (see figure 9c¢),
and on the post-saturation stage (see figure 10), we have small amplitude n but I
of order one, and the characteristic length of the pulses is not large. Then, even the
lubrication-approximation assumptions are not satisfied. This non-applicability of the
lubrication approximation seems to be a general feature for the S sector. For example,
if we take the Bond number sufficiently negative so that there are unstable robust
modes along with the unstable surfactant ones, we get results similar to the ones
shown in figure 11. We note that for these ‘deeply robust’ regimes the number of
I" pulses appears to be different from that of n pulses. This contrasts with the purely
surfactant mode regimes, and the robust surfactant regimes with a smaller negative
value of the Bond number. (We also note that the amplitude of fluctuations of 7,
and [}, in the post-saturation state may change with the number of pulses on the
computation interval. This occurs due to coalescences of pulses and the emergence
of new pulses, similar to such phenomena observed for a different strongly nonlinear
equation in Kerchman & Frenkel (1994).)

7. Summary and discussion

This study concerned the linear and nonlinear stages of evolution of initially
small disturbances of the horizontal two-fluid Couette flow (with top-to-bottom
aspect ratio n and viscosity ratio m) in the presence of surfactants and gravity, and
with negligible inertia (figure 1). For any flow with n < 1, it is described as one
with n > 1 in a new coordinate system obtained by reversing the (spanwise) z-axis
direction. Therefore, without loss of generality, we consider the flows with n > 1. The
lubrication approximation yields two coupled strongly nonlinear evolution equations
for the interface thickness and the insoluble surfactant concentration. These equations
take a weakly nonlinear form when the amplitudes of disturbances are small, but
finites» The ~onset of vinstability viswinvestigated by linearizing (for the infinitesimal
disturbances) these evolution equations and applying, as usual, the normal-mode
analysis.
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FIGURE 10. Small amplitude 1 and large amplitude I" profiles at the end time, 7= 10°,
of the evolution corresponding to figure 9(a).
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FIGURE 11. (Colour online) (a) Evolution of the maximum amplitude of n and I" for
the same parameter values as in the preceding two figures (thus in the § sector), with the
exception that Bo = —0.5 here. (b) Small amplitude n and large amplitude I at the end
time, = 10°.

The dispersion relation for the increment (a complex eigenvalue which determines
the real growth rate and the phase velocity) of the linear instability is found to be a
quadratic equation whose coefficients depend on the interfacial shear rate, the aspect
and viscosity ratios, the Marangoni number and the Bond number. As introduced in
HF for the case of no gravity, the subdivision of the n > 1 part of the (n, m)-plane
into the three sectors — called here the Q sector, in which m > n> > 1; the R sector,
characterized by 1 <m <n?; and the S sector, m < 1 (figure 2) — turns out to be useful
even in the presence of gravity.

The growth rate dependence on the wavenumber, being the real part of the solution
to the quadratic equation, has two single-valued continuous branches, called the robust
branch and the surfactant one. Correspondingly, for each wavenumber, there is a single
robust normal mode that exists even when Ma =0 and s =0, and a single surfactant
normal mode that vanishes when Ma | 0, and we speak of the two branches (sets) of
modes. The expressions for the growth rates for the base flows with a non-zero shear
rate s differ from those forra stagnant base two-layer system.

For s # 0, the growth rate for the robust branch (see (4.3)) is the sum of two terms,
which are both independent of|s: a Marangoni term (which equals the growth rate due
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to the surfactant in the absence of gravity, first found in Frenkel & Halpern (2002)),
and a Bond term (which gives the well-known growth rate of the Rayleigh—Taylor
instability of the flow with no surfactants). The Marangoni term is negative in the
S and Q sectors and positive in the R sector. The Bond term (with its negative sign
included) clearly increases when the Bond number decreases. Therefore, the instability
sets in when the Bond number is less than some threshold value denoted Bo,;. In the
Q and S sectors, where the Marangoni term is negative, the surfactant acts on the
robust modes in a stabilizing way, so Bo., < 0, while in the R sector, the surfactant
action has a destabilizing character and hence Bo. > 0. The ratio of the threshold
Bond number to the Marangoni number, being independent of the base shear rate s,
varies with the two remaining variables, the aspect ratio n and the viscosity ratio m,
only (figure 3).

In contrast to the robust modes, the growth rate for the surfactant branch with
s #0 (see (4.5)) has no purely Bond term; the leading term is purely Marangoni, not
containing the Bond number at all; and the higher-order terms, if they have the Bond
number as a factor, always contain some Marangoni number factor as well. These
surfactant modes are stable in the Q and R sectors and unstable in the S sector. Thus,
in the S sector, a finite band of the long-wave surfactant modes, somewhat surprisingly,
are unstable even for arbitrarily large Bond number (albeit the band width is expected
to decrease as gravity grows stronger). Thus, no amount of gravity, however strong,
can completely stabilize the surfactant instability in the S sector.

On the other hand, in the Q sector, the surfactant can stabilize the Rayleigh—Taylor
instability. Only the robust branch needs to be stabilized since the surfactant one is
stable independent of the Bond number (see 4.5). For example, the flow with n =2,
m=>5 and Bo= —0.015 is Rayleigh-Taylor unstable in the absence of surfactant. But
in the presence of surfactant, such that, say, Ma = 0.1, the flow is stable according
to (4.3). This value of the Bond number corresponds to (o, — ,ol)gdf = 0.0150y in
view of (3.6), that is, for o9 =10 (in cgs units), (o, — ,ol)gdf =0.15. For the Earth’s
gravity, g~ 10°, and p, — p; ~ O(1), this means the thickness d; ~ 10~ cm, a rather
thin film. But, under the conditions of microgravity, with (say) g~ 107!, the bottom
layer is much thicker, d; ~ 1 cm. (Even with the Earth’s gravity, the film thickness
is d; ~ 107! c¢m if the densities are almost equal, p, — p; ~ 1072.) It is remarkable
that the interfacial surfactant can completely suppress the Rayleigh—Taylor instability
under quite realistic physical conditions.

The lubrication approximation is sufficient for finding the results, including
increments, at the leading order and also in the next-order correction. For the
robust mode, the leading order of the increment determines the wave velocity which
turns out to be independent of the wavenumber « and hence can be eliminated by
using the co-moving reverence frame. To find the first truly non-zero term of the
wave velocity, scaling as o, one needs the first post-lubrication corrections to the
governing equations (as found in appendix B of Frenkel & Halpern 2016), whereas
the lubrication-theory increment correction gives the leading-order growth rate.

For the case of equal viscosities, m =1, i.e. on the boundary between the R and S
sectors, the gravitational effects are absent at the leading order, and so, as was found
in Frenkel & Halpern (2002), both growth rates scale as a*? (5.57). The correction
to them, proportional to —a?Bo, is the same for both modes (5.60).

For the case with no base flow, i.e. with s =0, both modes are stable if the Bond
number is positive; butrone of thermodes is unstable if the Bond number is negative.
This is essentially the Rayleigh—Taylor instability of a stagnant system modified by
the surfactant.
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The eigenfunction amplitudes, including those of the surfactant concentration G
(where the arbitrary interface deviation amplitude % is taken to be real and positive),
the velocities and pressures, are determined as well. This can be done using the
eigenvectors of the system for G and h. However, we have used also a different way,
linearizing the primitive governing equations (rather than the two evolution equations
derived from them) and using the method of undetermined coefficients, which has
advantages in uncovering the physical mechanisms of instability for the two modes.

We suggested that in the inertialess settings, the vorticity lacks the dynamic
significance which was shown by Charru & Hinch (2000) for a surfactantless case
of the Yih instability, whose very existence depends on inertia. Thus, in contrast
to the case of Yih instability, vorticity does not appear to be a suitable agent for
the mechanism of the surfactant instability. Wei (2005) showed that under certain
conditions, without gravitational effects, there is a correlation of stability of normal
modes with 6, the phase shift between the interfacial vorticity and the interfacial
displacement. Namely, 6, being in the interval (0, 7)) corresponds to instability
while 6, within the interval (—m, 0) corresponds to stability. However, we showed
that, under the same conditions, except for the Bond number being non-zero, this
correspondence does not necessarily hold. For example, figure 4 shows that the
growth rate changes from negative to positive as the Marangoni number grows, but
the vorticity-interface phase shift remains in the same interval (0, m) all along, thus
for both the stable and unstable flows. This is related to the lack of any significant
role of vorticity for instability in the absence of inertial effects, with or without
gravitational effects.

To uncover the mechanisms of instability for the two modes, we considered the
case of large thickness ratio and used the mass conservation laws in their integral
forms (similar to Charru & Hinch 2000). The growth/decay mechanism for the
robust branch is as follows: the leading-order disturbance flow is the same as in
Yih (1967) and leads to the same, purely imaginary, increment. This flow is found
from physical considerations as in Charru & Hinch (2000), using the fact that the
thick-layer disturbances uncouple in the case of the large aspect ratio. The surfactant
transport is determined by the base velocity at the perturbed interface. As a result, the
surfactant wave of the normal mode must propagate either in anti-phase, for m > 1,
or in phase, for m < 1, with the interface. The Marangoni tangential stress exerted by
the surfactant drives a correction flow in the thin layer whose horizontal velocity is
—90° out-of-phase with the surfactant. (This holds for all elevations, since the vertical
profile of this velocity is linear, and thus it has the same sign at all elevations.) Thus,
this velocity is either 90°, for m > 1, or —90°, for m < 1, out of phase with the
interface. For m > 1, this leads to a net outflow for the half-period part of the thin
layer with the thickness minimum at the interval midpoint, which means instability
for the normal mode; and for m < 1, the velocity is reversed, which yields stability.

The surfactant branch corresponds to the Marangoni stresses playing a role already
at the leading order of disturbances (in contrast to their correction role for the robust
branch). The leading-order flow disturbance in the thick layer is still the same as
that for the robust mode. We find that the Marangoni stress must cancel the viscous
tangential stress of the thick layer at the interface. As a result, the surfactant phase
shift with respect to the interface is 90° for m > 1 and —90° for m < 1. On the other
hand, the surfactant flux, the product of the base concentration and the thin-layer base
velocity at the perturbed interfaceyistalways in phase with the interface. Hence, the
surfactant flux is out of phase with the surfactant wave, 90° for m > 1 and —90°
for m < 1. Thus, considering the half-period interval of the wave with the maximum
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positive net influx through its end points, the surfactant concentration is minimum at
the midpoint for m > 1, but the magnitude of this minimum gradually decreases, which
means stability. In contrast, for m < 1 the surfactant concentration is maximum at the
midpoint, which grows because of the positive net influx of the surfactant, and this
corresponds to instability.

With no gravity, small-amplitude nonlinear saturation of the surfactant instability is
possible (figure 7), in contrast to the semi-infinite case studied by Frenkel & Halpern
(2006). For non-zero Bond number, the small-amplitude saturation in the Q sector is
seen in figure 8(a). It also occurs along the border between the R and Q sectors, where
m=n?, for Bo <0 (figure 6a).

For certain ranges of (m, n), in the R and Q sectors, the interface is governed
by a decoupled Kuramoto—Sivashinsky equation, whose solution provides a source
term for the linear convection—diffusion equation of the surfactant. When diffusion is
negligible, the surfactant equation has an analytic solution. As a result, the surfactant
wave 1s as chaotic as the interface; however, the ratio of the two waves is constant at
sufficiently large times such that the saturated state has been reached (figures 6b, 7b
and 8b). These analytical predictions are confirmed by the full numerical solution of
the nonlinear evolution equations.

In contrast, we have never seen the small-amplitude saturation in the S sector,
m < 1. Instead, numerical results show that the instability saturates with only the
interface disturbances being small amplitude but the surfactant ones large (figures 9
and 11). However, the final characteristic length scale of these solutions is not as
large as is required by the lubrication approximation (figures 10b and 11b). To the
best of our knowledge, the only other simulations for the case of finite aspect ratio,
even with zero gravity, were performed in Blyth & Pozrikidis (2004). They were
limited to the § sector and small computational intervals. The saturation that they
observed was not small amplitude, and we checked that if extended to sufficiently
large intervals, the evolution leads to a characteristic length scale being small, and
thus not consistent with the lubrication approximation. The question whether such
partly weakly and partly strongly nonlinear saturated regimes are real may be decided
by a future non-lubrication theory. Also, the inertial effects could be included, for
example, similar to Frenkel & Halpern (2005). The three-dimensional disturbances
could be considered similar to Frenkel & Halpern (2000).

Appendix A. Eigenfunctions: velocities and pressure
Provided s # 0 the velocities are as follows. For the surfactant branch, the real part
of the (bottom layer) horizontal velocity component u;, to its leading order a?, is

(m—1)
Re(u)) = —hs—(z+ DBz + 1); (A1)
(m —n?)

the imaginary part of u,, to its leading order «!, is

1 —1
Im(u)) = ah——@z+1) Mau[éim(n + D(z—1) +4m+3mn+n’]
(m — n?) 2(m— Dn
n?
— Bo€(3z+ 1)} . (A2)
The real part of the (top layer) velocity component uy, to its leading order o, is
-1
Re(up) = —hs(mi)(z —n)(3z—n); (A3)

m(m — n?)
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the imaginary part of u,, to its leading order «!, is

1 n—1)
Im(uz) = —Olh(’n_nz)(z_l/l){M(lz(

Bo
+6(3z—n)}. (A4)

D 3@t mne D+ ot 3n* 4 4n*)]

(Note that & = for m =n?. For this case, the velocities can be expressed in terms of
G rather than 4, in the same way as (A 17) and (A 18) below.)

For the robust branch, the real part of the (bottom-layer horizontal velocity
component) u,, to its leading order o, is

(m—1)

Re(u)) = —hs @+ DIBm —n*)(z — 1) +4(m+n)]; (A5)
the imaginary part of u,, to its leading order o', is

Im(u;) = ozhi(z—}— 1) {Maw[?)m(n + Dz — 1)+ (4m+ 3nm+n®)]
2 (m—1Dn

4
+ Bon*[(3m + 4nm + n*) (z — 1) + 4m(n + 1)]}. (A6)
The real part of u,, to its leading order o, is
m—1
Re(u,) = —hs( )(Z—n)[3(m—n2)(z+n) + 4(m+n)]; (A7)

the imaginary part of u, its leading order o!, is

Im(u,) = ahZi//(Z —n) {Ma((p

T [Bn(n+ 1)(z+n) — (m+3n° +4n’)]

+ Bo[—(m+4n+3n*)(z+n) +4(n+ 1)n2]}. (A 8)

For the special case m =1, the leading-order velocities are

2

172
1)> z+DBE—D+ @ —n+4)], (A9)

u =+a'?(1 —)h | 2Mas————
n+ 13—

1 1/2
U = :Fal/z(l — l)h <2M61S(n_|_1)3(n_1)> (Z — I’l)[—sl/l(z + n) + (4}’12 —n—+ 1)],

(A10)

with the upper/lower signs for the growing/decaying modes, respectively. The next-
order corrections are
2

n B ) B s ~
6 i =T DBE=DOF +20 =D +20° + 51 =), (A1l

uy = aihBo

(z—n)[3@z+n)(—n*+2n+1)+2n2n* —5n— 1)].
(A12)

(Note that the corrections for the growing mode are the same as for the decaying one.)

|
¢ — ihB
= e 13 (n—1)
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Considering the special case s =0 and Bo =0 (that implies that the leading-order
disturbances vanish, along with the base flow), the horizontal velocities are as follows.
For the surfactant branch, the bottom-layer horizontal velocity is

. (m+ n3) 3
u =12h———+ )[Bmn(n+ 1)(z — 1) +4m + 3mn + n’] (A13)
n(m — n*)y
while for the top layer, it is
(m+n’) 2 3
U = —12h—————(z —n)[-3n(n+ 1)(z+n) + m+3n°+4n’]. (A14)
n(m — n?)y
For the robust branch, the horizontal velocity in the bottom layer is
2h(m + n)n*a? 3
m=—1——— @+ DBr+1)z—-1)+4m+3mn+n’] (A15)
3(m — n?)yr
and for the top layer, it is
2h 2
iy = i R a4 1)@ )+ 30+ 4], (A 16)
3(m —n?)y

For the special case s =0 and Bo # 0, the horizontal velocities in terms of & and
G are

U = iazip(z—f— 1) { —2MaGn[3m(n + 1)(z — 1) + (4m + 3nm + n*)]

+ Bohn*[(3m + 4nm +n*)(z — 1) + dm(n + 1)]} (A17)

and
U, = ia;p(z —n) { —2MaGn[3n(n + 1)(z + n) — (m + 3n* + 4n°)]

+ Boh[—(m +4n + 3nY)(z+n) + 4(n+ Dn?]} . (A 18)

These velocities can be written in terms of # only by using the expression for G
in terms of 4 from (4.13), in which the two different values of y given by (3.34)
correspond to the two different normal modes for the case s =0 and Bo #0.

Using these horizontal velocities, the vertical velocities for the two branches are
obtained by integrating equation (3.3):

Z
w;(z) = —ia / u;(z) dz, (A19)
(where n; =—1 and n, =n, defined above for (3.2)). The pressures of the two branches
can be readily obtained using (3.1), which yields
iap; = m;D’u;. (A 20)
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